已知:如圖,BD、CE是△ABC的兩條高,M是BC的中點(diǎn).求證:ME=MD.
分析:根據(jù)已知條件知,MD是Rt△BCD斜邊BC上的中線,ME是Rt△BCE斜邊BC上的中線.所以根據(jù)直角三角形斜邊上的中線的性質(zhì)進(jìn)行證明即可.
解答:解:∵BD、CE是△ABC的兩條高,M是BC的中點(diǎn),
∴在Rt△BDC中,MD是斜邊BC上的中線,
∴MD=
1
2
BC;
同理,得
ME=
1
2
BC,
∴ME=MD.
點(diǎn)評(píng):本題考查了直角三角形斜邊上的中線.直角三角形斜邊上的中線等于斜邊的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,BD是AC邊上的高,DE⊥BC于E,BE:EC=5:1.若AD=2,AB=8.
求:CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,BD平分∠ABC,CE平分∠ACE,BD與CE交于點(diǎn)I,試說(shuō)明∠BIC=90°+
12
∠A.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知,如圖,BD是∠ABC的平分線,AB=BC,點(diǎn)P在BD上,PM⊥AD,PN⊥CD,垂足分別是M、N.試說(shuō)明:PM=PN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,BD為⊙O的直徑,點(diǎn)A是劣弧BC的中點(diǎn),AD交BC于點(diǎn)E,連接AB.
(1)求證:AB2=AE•AD;
(2)過(guò)點(diǎn)D作⊙O的切線,與BC的延長(zhǎng)線交于點(diǎn)F,若AE=2,ED=4,求EF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案