【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點(diǎn).
(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動(dòng).速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E
①過點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.當(dāng)t為何值時(shí),線段EG最長(zhǎng)?
②連接EQ.在點(diǎn)P、Q運(yùn)動(dòng)的過程中,判斷有幾個(gè)時(shí)刻使得△CEQ是等腰三角形?請(qǐng)直接寫出相應(yīng)的t值.
【答案】(1)點(diǎn)A的坐標(biāo)為(4,8)
將A (4,8)、C(8,0)兩點(diǎn)坐標(biāo)分別代入y=ax2+bx
得8=16a+4b
0=64a+8b
解得a=,b=4
∴拋物線的解析式為:y=-x2+4x
(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=
∴PE=AP=t.PB=8-t.
∴點(diǎn)E的坐標(biāo)為(4+t,8-t).
∴點(diǎn)G的縱坐標(biāo)為:-(4+t)2+4(4+t)=-t2+8.
∴EG=-t2+8-(8-t)
=-t2+t.
∵-<0,∴當(dāng)t=4時(shí),線段EG最長(zhǎng)為2.
②共有三個(gè)時(shí)刻:t1=, t2=,t3= .
【解析】(1)根據(jù)題意即可得到點(diǎn)A的坐標(biāo),再由A、C兩點(diǎn)坐標(biāo)根據(jù)待定系數(shù)法即可求得拋物線的解析式;
(2)①在Rt△APE和Rt△ABC中,由tan∠PAE,即可表示出點(diǎn)E的坐標(biāo),從而得到點(diǎn)G的坐標(biāo),EG的長(zhǎng)等于點(diǎn)G的縱坐標(biāo)減去點(diǎn)E的縱坐標(biāo),得到一個(gè)函數(shù)關(guān)系式,根據(jù)函數(shù)關(guān)系式的特征即可求得結(jié)果;②考慮腰和底,分情況討論。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+與x軸、y軸分別交于點(diǎn)A、B,在坐標(biāo)軸上找點(diǎn)P,使△ABP為等腰三角形,則點(diǎn)P的個(gè)數(shù)為( )
A. 2B. 4C. 6D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A,B兩點(diǎn)之間的距離表示為│AB│.當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,|AB|=|OB|=|b|=|ab|;
當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),
①如圖2,點(diǎn)A、B都在原點(diǎn)的右邊,|AB|=|OB||OA|=|b||a|=ba=|ab|;
②如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,|AB|=|OB||OA|=|b||a|=b(a)=ab=│a-b│;
③如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,|AB|=|OB|+|OA|=|b|+|a|=-b+a=|ab|;綜上,數(shù)軸上A、B兩點(diǎn)之間的距離|AB|=|ab|.
(1)回答下列問題:
①數(shù)軸上表示3和9的兩點(diǎn)之間的距離是______,數(shù)軸上表示5和9的兩點(diǎn)之間的距離是______,數(shù)軸上表示10和3的兩點(diǎn)之間的距離是______;
②數(shù)軸上表示x和4的兩點(diǎn)A和B之間的距離為______,如果|AB|=6,那么x為______;
③當(dāng)代數(shù)式|x+2|+|x3|取最小值______時(shí),相應(yīng)的x的取值范圍是______.
(2)a、b在數(shù)軸上位置如圖所示,請(qǐng)化簡(jiǎn)式子│a+1│-│2b-2│-│a+b│
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,山頂建有一座鐵塔,塔高BC=80米,測(cè)量人員在一個(gè)小山坡的P處測(cè)得塔的底部B點(diǎn)的仰角為45°,塔頂C點(diǎn)的仰角為60°.已測(cè)得小山坡的坡角為30°,坡長(zhǎng)MP=40米.求山的高度AB(精確到1米).(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是矩形,點(diǎn)的坐標(biāo)為(0,6),點(diǎn)的坐標(biāo)為(4,0),點(diǎn)從點(diǎn)出發(fā),沿以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)出發(fā),同時(shí)點(diǎn)從點(diǎn)出發(fā),沿以每秒3個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)重合時(shí),點(diǎn)、同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)當(dāng)時(shí),請(qǐng)直接寫出的面積為_____________;
(2)當(dāng)與相似時(shí),求的值;
(3)當(dāng)反比例函數(shù)的圖象經(jīng)過點(diǎn)、兩點(diǎn)時(shí),
①求的值;
②點(diǎn)在軸上,點(diǎn)在反比例函數(shù)的圖象上,若以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出所有滿足條件的的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖的數(shù)陣由88個(gè)偶數(shù)排成.現(xiàn)用一個(gè)如圖所示的平行四邊形框可以框出四個(gè)數(shù);
①圖中平行四邊形框內(nèi)的四個(gè)數(shù)有什么關(guān)系?
②在數(shù)陣中任意作一類似(1)中的平行四邊形框,設(shè)其中左上角的一個(gè)數(shù)是,那么其他三個(gè)數(shù)怎樣表示?
③在這個(gè)數(shù)陣的平行四邊形框內(nèi),是否存在和為288的四個(gè)數(shù)?若存在,求出這四個(gè)數(shù);不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)是的中點(diǎn),點(diǎn)是線段的延長(zhǎng)線上的一動(dòng)點(diǎn),連接,過點(diǎn)作的平行線,與線段的延長(zhǎng)線交于點(diǎn),連接、.
求證:四邊形是平行四邊形.
若,,則在點(diǎn)的運(yùn)動(dòng)過程中:
①當(dāng)________時(shí),四邊形是矩形,試說明理由;
②當(dāng)________時(shí),四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),按A→B→C的方向在AB和BC上移動(dòng),記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩盒中各有3張卡片,卡片上分別標(biāo)有數(shù)字﹣7、﹣1、3和﹣2、1、6,這些卡片除數(shù)字外都相同.把卡片洗勻后,從甲、乙兩盒中各任意抽取1張,并把抽得卡片上的數(shù)字分別作為平面直角坐標(biāo)系中一個(gè)點(diǎn)的橫坐標(biāo)、縱坐標(biāo).
(1)列出這樣的點(diǎn)所有可能的坐標(biāo);
(2)求這些點(diǎn)落在第二象限的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com