【題目】(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過(guò)點(diǎn)C,過(guò)A作AD⊥ED于點(diǎn)D,過(guò)B作BE⊥ED于點(diǎn)E.
求證:△BEC≌△CDA;
(模型應(yīng)用)
(2)①已知直線l1:y=x+4與坐標(biāo)軸交于點(diǎn)A、B,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45o至直線l2,如圖2,求直線l2的函數(shù)表達(dá)式;
②如圖3,長(zhǎng)方形ABCO,O為坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(8,-6),點(diǎn)A、C分別在坐標(biāo)軸上,點(diǎn)P是線段BC上的動(dòng)點(diǎn),點(diǎn)D是直線y=-2x+6上的動(dòng)點(diǎn)且在第四象限.若△APD是以點(diǎn)D為直角頂點(diǎn)的等腰直角三角形,請(qǐng)直接寫出點(diǎn)D的坐標(biāo).
【答案】⑴證明見(jiàn)解析;⑵y=-7x-21;⑶D(4,-2),(,).
【解析】
(1)根據(jù)△ABC為等腰直角三角形,AD⊥ED,BE⊥ED,可判定△ACD≌△CBE;
(2)①過(guò)點(diǎn)B作BC⊥AB,交l2于C,過(guò)C作CD⊥y軸于D,根據(jù)△CBD≌△BAO,得出BD=AO=3,CD=OB=4,求得C(-4,7),最后運(yùn)用待定系數(shù)法求直線l2的函數(shù)表達(dá)式;
②根據(jù)△APD是以點(diǎn)D為直角頂點(diǎn)的等腰直角三角形,當(dāng)點(diǎn)D是直線y=-2x+6上的動(dòng)點(diǎn)且在第四象限時(shí),分兩種情況:當(dāng)點(diǎn)D在矩形AOCB的內(nèi)部時(shí),當(dāng)點(diǎn)D在矩形AOCB的外部時(shí),設(shè)D(x,-2x+6),分別根據(jù)△ADE≌△DPF,得出AE=DF,據(jù)此列出方程進(jìn)行求解即可.
(1)證明:如圖1,
∵△ABC為等腰直角三角形,
∴CB=CA,∠ACD+∠BCE=90°,
又∵AD⊥ED,BE⊥ED,
∴∠D=∠E=90°,∠EBC+∠BCE=90°,
∴∠ACD=∠EBC,
在△ACD與△CBE中,
,
∴△ACD≌△CBE(AAS);
(2)①如圖2,過(guò)點(diǎn)B作BC⊥AB,交l2于C,過(guò)C作CD⊥y軸于D,
∵∠BAC=45°,
∴△ABC為等腰直角三角形,
由(1)可知:△CBD≌△BAO,
∴BD=AO,CD=OB,
∵直線l1:y=x+4中,若y=0,則x=-3;若x=0,則y=4,
∴A(-3,0),B(0,4),
∴BD=AO=3,CD=OB=4,
∴OD=4+3=7,
∴C(-4,7),
設(shè)l2的解析式為y=kx+b,則
,
解得,
∴l2的解析式:y=-7x-21;
②D(4,-2),(,).
理由:當(dāng)點(diǎn)D是直線y=-2x+6上的動(dòng)點(diǎn)且在第四象限時(shí),分兩種情況:
當(dāng)點(diǎn)D在矩形AOCB的內(nèi)部時(shí),如圖,過(guò)D作x軸的平行線EF,交直線OA于E,交直線BC于F,
設(shè)D(x,-2x+6),則OE=2x-6,AE=6-(2x-6)=12-2x,DF=EF-DE=8-x,
由(1)可得,△ADE≌△DPF,則DF=AE,
即:12-2x=8-x,
解得x=4,
∴-2x+6=-2,
∴D(4,-2),
此時(shí),PF=ED=4,CP=6=CB,符合題意;
當(dāng)點(diǎn)D在矩形AOCB的外部時(shí),如圖,過(guò)D作x軸的平行線EF,交直線OA于E,交直線BC于F,
設(shè)D(x,-2x+6),則OE=2x-6,AE=OE-OA=2x-6-6=2x-12,DF=EF-DE=8-x,
同理可得:△ADE≌△DPF,則AE=DF,
即:2x-12=8-x,
解得x=,
∴-2x+6=-,
∴D(,-),
此時(shí),ED=PF=,AE=BF=,BP=PF-BF=<6,符合題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y= (k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一拋物線型拱橋,當(dāng)拱頂?shù)剿娴木嚯x為2米時(shí),水面寬度為4米;那么當(dāng)水位下降1米后,水面的寬度為米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF、BF,EF與對(duì)角線AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC.
(1)求證:OE=OF;
(2)若BC=2 ,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)開(kāi)展菜市場(chǎng)菜價(jià)調(diào)查活動(dòng),以鍛煉同學(xué)們的生活能力.調(diào)查一共連續(xù)7天,每天調(diào)查3次,第一次8:00由各班的A小組調(diào)查,第二次13:00由B小組調(diào)查,第三次17:00由C小組調(diào)查.調(diào)查完后分析當(dāng)天的菜價(jià)波動(dòng)情況,七天調(diào)查結(jié)束后整理數(shù)據(jù),就得出了菜價(jià)最便宜的某一時(shí)段.下面是同學(xué)們的一些調(diào)查情況,請(qǐng)你幫忙分析數(shù)據(jù): 第1天菜價(jià)調(diào)查情況(單位:元/千克) 第2﹣5天平均菜價(jià)(單位:元/千克)
(1)根據(jù)“第2﹣5天平均菜價(jià)”圖來(lái)分析:哪種蔬果價(jià)格最便宜?
(2)從第一天的調(diào)查情況來(lái)看,哪種蔬果的價(jià)格波動(dòng)最?請(qǐng)通過(guò)計(jì)算說(shuō)明.
(3)計(jì)算蘋果、白菜、土豆在1﹣5天的平均菜價(jià).
(4)根據(jù)上面兩個(gè)圖來(lái)分析:在3﹣5天中的哪一天的哪一時(shí)段購(gòu)買蘋果最省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線l1經(jīng)過(guò)點(diǎn)(0,4),l2經(jīng)過(guò)點(diǎn)(3,2),且l1與l2關(guān)于x軸對(duì)稱,則l1與l2的交點(diǎn)坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)經(jīng)過(guò)點(diǎn)A(﹣1,0),B(5,﹣5),C(6,0)
(1)求拋物線的解析式;
(2)如圖,在直線AB下方的拋物線上是否存在點(diǎn)P使四邊形PACB的面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)若點(diǎn)Q為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),試指出使△QAB為等腰三角形的點(diǎn)Q一共有幾個(gè)?并請(qǐng)你求出其中一個(gè)點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)平面內(nèi)有兩點(diǎn)、,且、兩點(diǎn)之間的距離等于(為大于0的已知數(shù)),在不計(jì)算的數(shù)值條件下,完成下列兩題:
(1)以學(xué)過(guò)的知識(shí)用一句話說(shuō)出的理由;
(2)在軸上是否存在點(diǎn),使是等腰三角形,如果存在,請(qǐng)寫出點(diǎn)的坐標(biāo),并求的面積;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】超市準(zhǔn)備購(gòu)進(jìn)A、B兩種品牌的飲料共100件,兩種飲料每件利潤(rùn)分別是15元和13元.設(shè)購(gòu)進(jìn)A種飲料x件,且所購(gòu)進(jìn)的兩種飲料能全部賣出,獲得的總利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)根據(jù)兩種飲料歷次銷量記載:A種飲料至少購(gòu)進(jìn)30件,B種飲料購(gòu)進(jìn)數(shù)量不少于A種飲料件數(shù)的2倍.問(wèn):A、B兩種飲料進(jìn)貨方案有幾種?哪一種方案能使超市所獲利潤(rùn)最高?最高利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com