(2004•天津)下列命題中正確的是( )
A.對角線互相平分的四邊形是菱形
B.對角線互相平分且相等的四邊形是菱形
C.對角線互相垂直的四邊形是菱形
D.對角線互相垂直平分的四邊形是菱形
【答案】分析:對角線互相垂直平分的四邊形是菱形.
解答:解:根據(jù)菱形的判定,知對角線互相垂直平分的四邊形是菱形,
A、B、C錯誤,D正確.
故選D.
點(diǎn)評:本題考查菱形的判定方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、數(shù)學(xué)大師陳省身于2004年12月3日在天津逝世,陳省身教授在微分幾何等領(lǐng)域做出了杰出的貢獻(xiàn),是獲得沃爾夫獎的惟一華人,他曾經(jīng)指出,平面幾何中有兩個重要定理,一個是勾股定理,另一個是三角形內(nèi)角和定理,后者表明平面三角形可以千變?nèi)f化,但是三個內(nèi)角的和是不變量,下列幾個關(guān)于不變量的敘述:
(1)邊長確定的平行四邊形ABCD,當(dāng)A變化時(shí),其任意一組對角之和是不變的;
(2)當(dāng)多邊形的邊數(shù)不斷增加時(shí),它的外角和不變;
(3)當(dāng)△ABC繞頂點(diǎn)A旋轉(zhuǎn)時(shí),△ABC各內(nèi)角的大小不變;
(4)在放大鏡下觀察,含角α的圖形放大時(shí),角α的大小不變;
(5)當(dāng)圓的半徑變化時(shí),圓的周長與半徑的比值不變;
(6)當(dāng)圓的半徑變化時(shí),圓的周長與面積的比值不變.
其中錯誤的敘述有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《數(shù)據(jù)分析》(03)(解析版) 題型:解答題

(2004•天津)在一次數(shù)學(xué)知識競賽中,某班20名學(xué)生的成績?nèi)胂卤硭荆?br />
 成績
(單位:分)
 50 60 70 80 90
 人數(shù) 2 3 6 7 2
分別求這些學(xué)生成績的眾數(shù)、中位數(shù)、和平均數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(05)(解析版) 題型:解答題

(2004•天津)在建筑樓梯時(shí),設(shè)計(jì)者要考慮樓梯的安全程度,如圖1,虛線為樓梯的斜度線,斜度線與地板的夾角為傾角θ,一般情況下,傾角θ愈小,樓梯的安全程度愈高.如圖2,設(shè)計(jì)者為提高樓梯的安全程度,要把樓梯的傾角由θ1減至θ2,這樣樓梯占用地板的長度由d1增加到d2,已知d1=4m,∠θ1=40°,∠θ2=36°,求樓梯占用地板的長度增加了多少?(精確到0.01m)
參考數(shù)據(jù):sin36°=0.5878,cos36°=0.8090,tan36°=0.7265,sin40°=0.6428,cos40°=0.7660,tan40°=0.8391.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年天津市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•天津)在建筑樓梯時(shí),設(shè)計(jì)者要考慮樓梯的安全程度,如圖1,虛線為樓梯的斜度線,斜度線與地板的夾角為傾角θ,一般情況下,傾角θ愈小,樓梯的安全程度愈高.如圖2,設(shè)計(jì)者為提高樓梯的安全程度,要把樓梯的傾角由θ1減至θ2,這樣樓梯占用地板的長度由d1增加到d2,已知d1=4m,∠θ1=40°,∠θ2=36°,求樓梯占用地板的長度增加了多少?(精確到0.01m)
參考數(shù)據(jù):sin36°=0.5878,cos36°=0.8090,tan36°=0.7265,sin40°=0.6428,cos40°=0.7660,tan40°=0.8391.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年天津市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•天津)在一次數(shù)學(xué)知識競賽中,某班20名學(xué)生的成績?nèi)胂卤硭荆?br />
 成績
(單位:分)
 50 60 70 80 90
 人數(shù) 2 3 6 7 2
分別求這些學(xué)生成績的眾數(shù)、中位數(shù)、和平均數(shù).

查看答案和解析>>

同步練習(xí)冊答案