【題目】本學期學了分式方程的解法,下面是晶晶同學的解題過程:
解方程
解:整理,得:……………………………………………………第①步
去分母,得:……………………………………………………………第②步
移項,得:…………………………………………………………………第③步
合并同類項,得………………………………………………………………第④步
系數(shù)化1,得:…………………………………………………………………第⑤步
檢驗:當時,
所以原方程的解是………………………………………………………………第⑥步
上述晶晶的解題辻程從第__________步開始出現(xiàn)錯誤,錯誤的原因是_________________.請你幫晶晶改正錯誤,寫出完整的解題過程
【答案】,去掉分母后應把分子加括號,正確過程見解析
【解析】
分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.
解:
方程兩邊同時乘以x(x-1)得:6x-(x+5)=0,
去括號得:6x-x-5=0,
即晶晶的解題過程從第②步開始出現(xiàn)錯誤,錯誤的原因是:(x+5)是一個整體,應該加括號,
解方程:,
整理得:,
方程兩邊同時乘以x(x-1)得:6x-(x+5)=0,
去括號得:6x-x-5=0,
移項得:6x-x=5,
合并同類項得:5x=5,
系數(shù)化為1得:x=1,
檢驗:當x=1時,x(x-1)=0
所以x=1使原分式方程無意義,原方程無解.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,∠A是銳角,E為邊AD上一點,△ABE沿著BE折疊,使點A的對應點F恰好落在邊CD上,連接EF,BF.
(1)若∠A=70°,請直接寫出∠ABF的度數(shù).
(2)若點F是CD的中點,
①求sinA的值;
②求證:S△ABE=SABCD.
(3)設=k, =m,試用含k的代數(shù)式表示m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一張長方形卡片ABCD放在每格寬度為12mm的橫格紙中,恰好四個頂點都在橫格線上.已知α=36°,求長方形卡片的周長.
(精確到1mm,參考數(shù)據(jù):sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點B(-2,0),點C(8,0),與y軸交于點A.
(1)求二次函數(shù)y=ax2+bx+4的表達式;
(2)連接AC,AB,若點N在線段BC上運動(不與點B,C重合),過點N作NM∥AC,交AB于點M,當△AMN面積最大時,求N點的坐標;
(3)連接OM,在(2)的結(jié)論下,求OM與AC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=6cm,AC=8cm,以斜邊BC上距離B點6cm的點P為中心,把這個三角形按逆時針方向旋轉(zhuǎn)90°至△DEF,則旋轉(zhuǎn)前后兩個三角形重疊部分的面積是_______cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在星期一的第八節(jié)課,我校體育老師隨機抽取了九年級的總分學生進行體育中考的模擬測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,按得分劃分成A、B、C、D、E、F六個等級,并繪制成如下兩幅不完整的統(tǒng)計圖表.
等級 | 得分x(分) | 頻數(shù)(人) |
A | 95<x≤100 | 4 |
B | 90<x≤95 | m |
C | 85<x≤90 | n |
D | 80<x≤85 | 24 |
E | 75<x≤80 | 8 |
F | 70<x≤75 | 4 |
請你根據(jù)圖表中的信息完成下列問題:
1)本次抽樣調(diào)查的樣本容量是 .其中m= ,n= .
2)扇形統(tǒng)計圖中,求E等級對應扇形的圓心角α的度數(shù);
3)我校九年級共有700名學生,估計體育測試成績在A、B兩個等級的人數(shù)共有多少人?
4)我校決定從本次抽取的A等級學生(記為甲、乙、丙、。┲校S機選擇2名成為學校代表參加全市體能競賽,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.如果點P在線段BC上以3cm/s的速度由點B向C點運動,同時,點Q在線段CA上由點C向A點運動.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由.
(2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點A(3,0),二次函數(shù)圖象的對稱軸是x=1,下列結(jié)論:
①b2>4ac;②ac>0; ③當x>1時,y隨x的增大而減小; ④3a+c>0;⑤任意實數(shù)m,a+b≥am2+bm.
其中結(jié)論正確的序號是( 。
A. ①②③ B. ①④⑤ C. ③④⑤ D. ①③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中小方格邊長為1,請你根據(jù)所學的知識解決下面問題.
(1)求網(wǎng)格圖中△ABC的面積.
(2)判斷△ABC是什么形狀?并所明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com