如圖,在△ABC中,D、E分別是AB和AC的中點,F(xiàn)是BC延長線上的一點,DF平分CE于點G,CF=2,則BC的長為( 。
分析:根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得BC=2DE,DE∥BC,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠DEG=∠FCG,然后利用“角邊角”證明△DEG和△FCG全等,根據(jù)全等三角形對應(yīng)邊相等可得DE=CF,然后求解即可.
解答:解:∵D、E分別是AB和AC的中點,
∴DE=
1
2
BC,DE∥BC,
∴∠DEG=∠FCG,
∵DF平分CE于點G,
∴EG=CG,
∵在△DEG和△FCG中,
∠DEG=∠FCG
EG=CG
∠DGE=∠FGC
,
∴△DEG≌△FCG(ASA),
∴DE=CF,
∵CF=2,
∴DE=2,
∴BC=2DE=2×2=4.
故選C.
點評:本題考查了三角形的中位線平行于第三邊并且等于第三邊的一半的性質(zhì),全等三角形的判定與性質(zhì),是基礎(chǔ)題,熟練掌握定理并判定出三角形全等是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案