【題目】如圖所示,正五邊形ABCDE的對角線AC、BE相交于M.
(1)求證:四邊形CDEM是菱形;
(2)設(shè)MF2=BE·BM,若AB=4,求BE的長.
【答案】(1)證明見解析(2)2+2
【解析】試題分析:(1)先證明CDEM是平行四邊形,由于DE=DC,所以是菱形.
(2) 先證明△ABE∽△MAB,得到AB2=BEBM;ME2=BEBM,可解得BE長..
試題解析:
(1)∵五邊形ABCDE是正五邊形,
∴∠D=××360°=108°,∠DCA=××360°=72°,
∴∠D+∠DCA=180°,
∴DE∥AC;同理可證DC∥BE,
∴四邊形DEMC為平行四邊形,而DE=DC,
∴四邊形CDEM是菱形.
(2)∵五邊形ABCDE是正五邊形,
∴∠AEB=××360°=36°,∠EAM=××360°=72°;
同理可求∠BAC=∠ABE=36°,
∴△ABE∽△MAB,
∴AB:BE=BM:AB,
∴AB2=BEBM;
∵ME2=BEBM,
∴ME=AB=4,BM=BE-4,
∴BE(BE-4)=16,
解得:BE=2+2或2-2(舍去).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABP中,C是BP邊上一點(diǎn),∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點(diǎn)E.(1)求證:PA是⊙O的切線;
(2)過點(diǎn)C作CF⊥AD,垂足為點(diǎn)F,延長CF交AB于點(diǎn)G,若AG·AB=12,求AC的長;(3)在滿足(2)的條件下,若AF∶FD=1∶2,GF=1,求⊙O的半徑及sin∠ACE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把y=x2的圖象向上平移2個(gè)單位.
(1)求新圖象的解析式、頂點(diǎn)坐標(biāo)和對稱軸;
(2)畫出平移后的函數(shù)圖象;
(3)求平移后的函數(shù)的最大值或最小值,并求對應(yīng)的x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在5次打靶測試中命中的環(huán)數(shù)如下:
甲:8,8,7,8,9
乙:5,9,7,10,9
(1)計(jì)算甲、乙兩人射擊成績的平均數(shù).
(2)計(jì)算甲、乙兩人的射擊成績的方差,并說明誰的成績更穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】健身運(yùn)動已成為時(shí)尚,某公司計(jì)劃組裝、兩種型號的健身器材共套,捐給社區(qū)健身中心。組裝一套型健身器材需甲種部件個(gè)和乙種部件個(gè),組裝一套型健身器材需甲種部件個(gè)和乙種部件個(gè).公司現(xiàn)有甲種部件個(gè),乙種部件個(gè).
()公司在組裝、兩種型號的健身器材時(shí),共有多少種組裝方案?
()組裝一套型健身器材需費(fèi)用元,組裝一套型健身器材需費(fèi)用元,求總組裝費(fèi)用最少的組裝方案,并求出最少組裝費(fèi)用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生參加戶外活動的情況,和諧中學(xué)對學(xué)生每天參加戶外活動的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖示,請回答下列問題:
(1)求被抽樣調(diào)查的學(xué)生有多少人?并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)該校共有1850名學(xué)生,請估計(jì)該校每天戶外活動時(shí)間超過1小時(shí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】楊陽同學(xué)沿一段筆直的人行道行走,在由A步行到達(dá)B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對面人行道宣傳墻上的社會主義核心價(jià)值觀標(biāo)語,其具體信息匯集如下:如圖,AB∥OH∥CD,相鄰的平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=18米,請根據(jù)上述信息求標(biāo)語CD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD的對角線AC和BD交于O點(diǎn),分別過頂點(diǎn)B,C作兩對角線的平行線交于點(diǎn)E,得平行四邊形OBEC.
(1)如果四邊形ABCD為矩形(如圖),四邊形OBEC為何種四邊形?請證明你的結(jié)論;
(2)當(dāng)四邊形ABCD是 形時(shí),四邊形OBEC是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y=kx經(jīng)過點(diǎn)A,點(diǎn)A在第四象限,過點(diǎn)A作AH⊥x軸,垂足為點(diǎn)H,點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3.
(1)求正比例函數(shù)的解析式;
(2)在x軸上能否找到一點(diǎn)P,使△AOP的面積為5?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com