【題目】作圖題:如圖,在平面直角坐標(biāo)系 xOy 中,A(2,3),B(3,1),C(﹣2,﹣1).
①在圖中作出△ABC 關(guān)于 x 軸的對(duì)稱圖形△A1B1C1 并寫出 A1,B1,C1 的坐標(biāo);
②在 y 軸上畫出點(diǎn) P,使 PA+PB 最。ú粚懽鞣ǎA糇鲌D痕跡)
③求△ABC 的面積.
【答案】①如圖所示見(jiàn)解析, A1 的坐標(biāo)(2,﹣3),B1 的坐標(biāo)(3,﹣1),C1 的坐標(biāo)(﹣2,1);②如圖所示見(jiàn)解析;③6.
【解析】
①分別作出各點(diǎn)關(guān)于 x 軸的對(duì)稱點(diǎn),再順次連接即可;根據(jù)各點(diǎn)在坐標(biāo)系中的位置寫出各點(diǎn)坐標(biāo)即可;②作點(diǎn) A 關(guān)于 y 軸的對(duì)稱點(diǎn) A',連接 A'B 交 y 軸于點(diǎn) P,點(diǎn) P 即為所求;③利用割補(bǔ)法即可求得△ABC的面積.
①如圖所示,△A1B1C1 即為所求;A1 的坐標(biāo)(2,﹣3),B1 的坐標(biāo)(3,﹣1),C1 的坐標(biāo)(﹣2,1);
②如圖所示,點(diǎn) P 即為所求;
③S△ABC=S△ABD+S△BCD=×3×2+×3×2=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知圖1將線段AB向右平移1個(gè)單位長(zhǎng)度,圖2是將線段AB折一下再向右平移1個(gè)單位長(zhǎng)度,請(qǐng)?jiān)趫D3中畫出一條有兩個(gè)折點(diǎn)的折線向右平移1個(gè)單位長(zhǎng)度的圖形;
(2)若長(zhǎng)方形的長(zhǎng)為a,寬為b,請(qǐng)分別寫出三個(gè)圖形中除去陰影部分后剩下部分的面積;
(3)如圖4,在寬為10 m,長(zhǎng)為40 m的長(zhǎng)方形菜地上有一條彎曲的小路,小路寬度為1 m,求這塊菜地的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用計(jì)算器計(jì)算:
(1)π-(精確到0.01);
(2)- (精確到0.001);
(3)4-(精確到0.1);
(4)+(-)(精確到0.01).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣ +bx+c圖象經(jīng)過(guò)A(﹣1,0),B(4,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)若C(m,m﹣1)是拋物線上位于第一象限內(nèi)的點(diǎn),D是線段AB上的一個(gè)動(dòng)點(diǎn)(不與A、B重合),過(guò)點(diǎn)D分別作DE∥BC交AC于E,DF∥AC交BC于F.
①求證:四邊形DECF是矩形;
②試探究:在點(diǎn)D運(yùn)動(dòng)過(guò)程中,DE、DF、CF的長(zhǎng)度之和是否發(fā)生變化?若不變,求出它的值,若變化,試說(shuō)明變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知某船于上午8時(shí)在A處觀測(cè)小島C在北偏東60°方向上,該船以每小時(shí)20海里的速度向東航行到B處,測(cè)得小島C在北偏東30°方向上,船以原來(lái)的速度繼續(xù)向東航行2小時(shí),到達(dá)島C正南方點(diǎn)D處,船從A到D一共航行了多少海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的中線,E,F(xiàn)分別是AD和AD延長(zhǎng)線上的點(diǎn),且DE=DF,連接BF,CE,下列說(shuō)法中正確的個(gè)數(shù)是( 。
①CE=BF;②△ABD和△ADC的面積相等;③BF∥CE;④CE,BF均與AD垂直
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為Rt△ABC斜邊AB上一點(diǎn),以O(shè)A為半徑的⊙O與BC切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.
(1)求證:AD平分∠BAC;
(2)若∠BAC=60°,OA=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次反潛演習(xí)中,紅方軍艦A測(cè)得藍(lán)方潛艇C的俯角為31°,位于軍艦A正上方800米的紅方反潛直升機(jī)B測(cè)得潛艇C的俯角為65°.試根據(jù)以上數(shù)據(jù)求出潛艇C離開(kāi)海平面的下潛深度(結(jié)果保留整數(shù))
(參考數(shù)據(jù):sin31°≈ ,tan31°≈ ,sin65°≈ ,tan65°≈ )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com