【題目】為營(yíng)造書(shū)香家庭,周末小亮和姐姐一起從家出發(fā)去圖書(shū)館借書(shū),走了6min發(fā)現(xiàn)忘帶借書(shū)證,小亮立即騎路邊共享單車(chē)返回家中取借書(shū)證,姐姐以原來(lái)的速度繼續(xù)向前走,小亮取回借書(shū)證后騎單車(chē)原路原速前往圖書(shū)館,小亮追上姐姐后用單車(chē)帶著姐姐一起前往圖書(shū)館。已知騎車(chē)的速度是步行速度的2倍,如圖是小亮和姐姐距離家的路程y(m)與出發(fā)的時(shí)間x(min)的函數(shù)圖象,根據(jù)圖象解答下列問(wèn)題:
(1)小亮在家停留了多長(zhǎng)時(shí)間?
(2)求小亮騎車(chē)從家出發(fā)去圖書(shū)館時(shí)距家的路程 y(m)與出發(fā)時(shí)間 x(min)之間的函數(shù)解析式.
【答案】(1)小亮在家停留了1min;(2) .
【解析】(1)根據(jù)路程與速度、時(shí)間的關(guān)系,首先求出C、B兩點(diǎn)的坐標(biāo),即可解決問(wèn)題;
(2)根據(jù)C、D兩點(diǎn)坐標(biāo),利用待定系數(shù)法即可解決問(wèn)題.
(1)步行速度:300÷6=50m/min,單車(chē)速度:2×50=100m/min,
單車(chē)時(shí)間:3000÷100=30min,40-30=10,
∴C(10,0),
∴A到B是時(shí)間==3min,
∴B(9,0),
∴BC=1,
∴小亮在家停留了1分鐘;
(2)設(shè)解析式為y=kx+b ,將C (10,0) 和D (40,300) 代入得
,解得,
所以 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市水果批發(fā)部門(mén)欲將A市的一批水果運(yùn)往本市銷(xiāo)售,有火車(chē)和汽車(chē)兩種運(yùn)輸方式,運(yùn)輸過(guò)程中的損耗均為200元/時(shí),其他主要參考數(shù)據(jù)如下:
運(yùn)輸工具 | 途中平均速度 (千米/時(shí)) | 運(yùn)費(fèi) (元/千米) | 裝卸費(fèi)用 (元) |
火車(chē) | 100 | 15 | 2000 |
汽車(chē) | 80 | 20 | 900 |
(1)如果選擇汽車(chē)的總費(fèi)用比選擇火車(chē)的總費(fèi)用多1100元,那么你知道本市與A市之間的路程是多少千米嗎?請(qǐng)你列方程解答;
(2)若A市與某市之間的路程為s千米,且知道火車(chē)與汽車(chē)在路上耽誤的時(shí)間分別為2小時(shí)和3.1小時(shí),要想將這批水果運(yùn)往該市進(jìn)行銷(xiāo)售,則當(dāng)s為多少時(shí),選擇火車(chē)和汽車(chē)運(yùn)輸所需費(fèi)用相同?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:有三個(gè)內(nèi)角相等凸四邊形叫三等角四邊形.
(1)三等角四邊形ABCD中,∠A=∠B=∠C,求∠A的取值范圍;
(2)如圖,折疊平行四邊形紙片DEBF,使頂點(diǎn)E,F(xiàn)分別落在邊BE,BF上的點(diǎn)A,C處,折痕分別為DG,DH.求證:四邊形ABCD是三等角四邊形.
(3)三等角四邊形ABCD中,∠A=∠B=∠C<90°,若CB=CD=4,則當(dāng)AD的長(zhǎng)為何值時(shí),AB的長(zhǎng)最大,其最大值是多少?(作圖解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)倉(cāng)庫(kù)共存有糧食60.解決下列問(wèn)題,3個(gè)小題都要寫(xiě)出必要的解題過(guò)程:
(1)甲倉(cāng)庫(kù)運(yùn)進(jìn)糧食14,乙倉(cāng)庫(kù)運(yùn)出糧食10后,兩個(gè)倉(cāng)庫(kù)的糧食數(shù)量相等.甲、乙兩個(gè)倉(cāng)庫(kù)原來(lái)各有多少糧食?
(2)如果甲倉(cāng)庫(kù)原有的糧食比乙倉(cāng)庫(kù)的2倍少3,則甲倉(cāng)庫(kù)運(yùn)出多少糧食給乙倉(cāng)庫(kù),可使甲、乙兩倉(cāng)庫(kù)糧食數(shù)量相等?
(3)甲乙兩倉(cāng)庫(kù)同時(shí)運(yùn)進(jìn)糧食,甲倉(cāng)庫(kù)運(yùn)進(jìn)的數(shù)量比本倉(cāng)庫(kù)原存糧食數(shù)量的一半多1,乙倉(cāng)庫(kù)運(yùn)進(jìn)的數(shù)量是本倉(cāng)庫(kù)原有糧食數(shù)量加上8所得的和的一半.求此時(shí)甲、乙兩倉(cāng)庫(kù)共有糧食多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)A點(diǎn)的一次函數(shù)的圖象與正比例函數(shù)y=2x的圖象相交于點(diǎn)B.
(1)求一次函數(shù)的解析式;
(2)判斷點(diǎn)C(4,-2)是否在該一次函數(shù)的圖象上,說(shuō)明理由;
(3)若該一次函數(shù)的圖象與x軸交于D點(diǎn),求△BOD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,直徑AB垂直弦CD于E,過(guò)點(diǎn)A作∠DAF=∠DAB,過(guò)點(diǎn)D作AF的垂線,垂足為F,交AB的延長(zhǎng)線于點(diǎn)P,連接CO并延長(zhǎng)交⊙O于點(diǎn)G,連接EG,已知DE=4,AE=8.
(1)求證:DF是⊙O的切線;
(2)求證:OC2=OEOP;
(3)求線段EG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于與坐標(biāo)軸不平行的直線l和點(diǎn)P,給出如下定義:過(guò)點(diǎn)P作x軸,y軸的垂線,分別交直線l于點(diǎn)M,N,若PM+PN≤4,則稱(chēng)P為直線l的近距點(diǎn),特別地,直線上l所有的點(diǎn)都是直線l的近距點(diǎn).已知點(diǎn)A(-,0),B(0,2),C(-2,2).
(1)當(dāng)直線l的表達(dá)式為y=x時(shí),
①在點(diǎn)A,B,C中,直線l的近距點(diǎn)是 ;
②若以OA為邊的矩形OAEF上所有的點(diǎn)都是直線l的近距點(diǎn),求點(diǎn)E的縱坐標(biāo)n的取值范圍;
(2)當(dāng)直線l的表達(dá)式為y=kx時(shí),若點(diǎn)C是直線l的近距點(diǎn),直接寫(xiě)出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,CE⊥AB交AB延長(zhǎng)線于點(diǎn)E,點(diǎn)F為點(diǎn)B關(guān)于CE的對(duì)稱(chēng)點(diǎn),連接CF,分別延長(zhǎng)DC,CF至點(diǎn)G,H,使FH=CG,連接AG,DH交于點(diǎn)P.
(1)依題意補(bǔ)全圖1;
(2)猜想AG和DH的數(shù)量關(guān)系并證明;
(3)若∠DAB=70°,是否存在點(diǎn)G,使得△ADP為等邊三角形?若存在,求出CG的長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個(gè)圖形中面積為1的正方形有2個(gè),第(2)個(gè)圖形中面積為1的正方形有5個(gè),第(3)個(gè)圖形中面積為1的正方形有9個(gè),……按此規(guī)律,則第50個(gè)圖形中面積為1的正方形的個(gè)數(shù)為( 。
A. 1322 B. 1323 C. 1324 D. 1325
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com