【題目】如圖,在 11×16 的網(wǎng)格圖中,△ABC 三個頂點(diǎn)坐標(biāo)分別為 A(﹣4,0),B(﹣1,1),C(﹣2,3).

(1)請畫出△ABC 沿x 軸正方向平移4個單位長度所得到的△A1B1C1;

(2)以原點(diǎn)O為位似中心,將(1)中的△A1B1C1 放大為原來的3倍得到△A2B2C2,請在第一象限內(nèi)畫出△A2B2C2,并直接寫出△A2B2C2 三個頂點(diǎn)的坐標(biāo).

【答案】(1)畫圖見解析;(2)畫圖見解析,A2(0,0),B2(9,3),C2(6,9).

【解析】

1)直接利用平移的性質(zhì)得出對應(yīng)點(diǎn)位置進(jìn)而得出答案;
2)利用位似圖形的性質(zhì)得出對應(yīng)點(diǎn)位置進(jìn)而得出答案, 平面直角坐標(biāo)系中,如果位似變換是以原點(diǎn)為位似中心,相似比為3,位似圖形對應(yīng)點(diǎn)的坐標(biāo)比等于:±3,本題再第一象限所以只取位似圖形對應(yīng)點(diǎn)的坐標(biāo)比等于3,求出坐標(biāo)即可畫出圖形.

(1)如圖所示:△A1B1C1,即為所求;

(2)如圖所示:△A2B2C2,即為所求,△A2B2C2 三個頂點(diǎn)的坐標(biāo):A2(00),B2(93),C2(6,9)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】制作一種產(chǎn)品,需先將材料加熱達(dá)到60℃后,再進(jìn)行操作,設(shè)該材料溫度為y(℃)從加熱開始計算的時間為xmin).據(jù)了解,當(dāng)該材料加熱時,溫度y與時間x成一次函數(shù)關(guān)系:停止加熱進(jìn)行操作時,溫度y與時間x成反比例關(guān)系(如圖).已知在操作加熱前的溫度為15℃,加熱5分鐘后溫度達(dá)到60℃.

1)分別求出將材料加熱和停止加熱進(jìn)行操作時,yx的函數(shù)關(guān)系式;

2)根據(jù)工藝要求,當(dāng)材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x與雙曲線y=x0)交于點(diǎn)A,將直線y=x向右平移3個單位后,與雙曲線y=x0)交于點(diǎn)B,與x軸交于點(diǎn)C,若=2,則k=( 。

A. B. 4 C. 6 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于函數(shù)的四個命題:

①當(dāng)x=0時,y有最小值6;

m為任意實(shí)數(shù),x=2-m時的函數(shù)值大于x=2+m時的函數(shù)值;

③若函數(shù)圖象過點(diǎn)(a,m0) 和(b, m0+1),其中a>0,b>2,則ab;

④若m>2,且m是整數(shù),當(dāng)mxm+1 時,y的整數(shù)值有(2m-2).

其中真命題有______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年3月國際風(fēng)箏節(jié)期間,王大伯決定銷售一批風(fēng)箏,經(jīng)市場調(diào)研:蝙蝠型風(fēng)箏進(jìn)價每個為10元,當(dāng)售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:

(1)用表達(dá)式表示蝙蝠型風(fēng)箏銷售量y(個)與售價x(元)之間的函數(shù)關(guān)系(12≤x≤30);

(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應(yīng)定為多少?

(3)當(dāng)售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6 cm ,如果點(diǎn)P由B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動,同時點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動,它們的速度均為2cm /s,連接PQ,設(shè)運(yùn)動的時間為t(單位:s)(0≤t≤4).解答下列問題:

(1)當(dāng)t為何值時,PQ∥BC.

(2)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在求出此時t的值;若不存在,請說明理由.

(3)如圖2,把△APQ沿AP翻折,得到四邊形AQPQ′.那么是否存在某時刻t使四邊形AQPQ′為菱形?若存在,求出此時菱形的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),AE和過點(diǎn)C的切線互相垂直,垂足為E,AE交⊙O于點(diǎn)D,直線ECAB的延長線于點(diǎn)P,連接AC、BC.

1)求證:AC平分∠BAD.

2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一筆直的海岸線上有A、B兩上觀測站,AB的正東方向,BP6(單位:km).有一艘小船停在點(diǎn)P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.

1)求A、B兩觀測站之間的距離;

2)小船從點(diǎn)P處沿射線AP的方向進(jìn)行沿途考察,求觀測站B到射線AP的最短距離.

查看答案和解析>>

同步練習(xí)冊答案