【題目】某超市第一次用6000元購進(jìn)甲、乙兩種商品,其中甲商品件數(shù)的2倍比乙商品件數(shù)的3倍多20件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表(利潤=售價(jià)﹣進(jìn)價(jià)):
甲 | 乙 | |
進(jìn)價(jià)(元/件) | 20 | 28 |
售價(jià)(元/件) | 26 | 40 |
(1)該超市第一次購進(jìn)甲、乙兩種商品的件數(shù)分別是多少?
(2)該超市將第一次購進(jìn)的甲、乙兩種商品全部賣出后一共可獲得多少利潤?
(3)該超市第二次以同樣的進(jìn)價(jià)又購進(jìn)甲、乙兩種商品.其中甲商品件數(shù)是第一次的2倍,乙商品的件數(shù)不變.甲商品按原價(jià)銷售,乙商品打折銷售.第二次甲、乙兩種商品銷售完以后獲得的利潤比第一次獲得的利潤多560元,則第二次乙商品是按原價(jià)打幾折銷售的?
【答案】(1) 該超市第一次購進(jìn)甲商品160件,乙商品100件; (2) 可獲得2160元利潤;(3) 第二次乙商品是按原價(jià)打九折銷售的
【解析】
(1)設(shè)該超市第一次購進(jìn)甲商品件,乙商品件,根據(jù)總價(jià)=單價(jià)×數(shù)量及購進(jìn)甲商品件數(shù)的2倍比乙商品件數(shù)的3倍多20件,即可得出關(guān)于,的二元一次方程組,解之即可得出結(jié)論;
(2)根據(jù)總利潤=每件利潤×銷售數(shù)量(購進(jìn)數(shù)量),即可求出結(jié)論;
(3)設(shè)第二次乙商品是按原價(jià)打m折銷售的,根據(jù)總利潤=每件利潤×銷售數(shù)量(購進(jìn)數(shù)量),即可得出關(guān)于m的一元一次方程,解之即可得出結(jié)論.
(1)設(shè)該超市第一次購進(jìn)甲商品件,乙商品件,
依題意,得:,
解得:.
答:該超市第一次購進(jìn)甲商品160件,乙商品100件;
(2)(26-20)×160+(40-28)×100=2160(元).
答:該超市將第一次購進(jìn)的甲、乙兩種商品全部賣出后一共可獲得2160元利潤;
(3)設(shè)第二次乙商品是按原價(jià)打m折銷售的,
依題意,得:(26-20)×160×2+(40-28)×100=2160+560,
解得.
答:第二次乙商品是按原價(jià)打九折銷售的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明:
已知:如圖,點(diǎn)D,E,F分別在線段AB,BC,AC上,連接DE、EF,DM平分∠ADE交EF于點(diǎn)M,∠1+∠2=180°.
求證: ∠B =∠BED.
證明:∵∠1+∠2=180°(已知),
又∵∠1+∠BEM=180°( ),
∴∠2=∠BEM( ),
∴DM∥______(_________________________________________).
∴∠ADM =∠B(_________________________________________),
∠MDE =∠BED(_______________________________________).
又∵DM平分∠ADE (已知),
∴∠ADM =∠MDE ( ).
∴∠B =∠BED(等量代換).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一枚運(yùn)載火箭從地面L處發(fā)射,當(dāng)火箭到達(dá)A點(diǎn)時(shí),從位于距發(fā)射架底部4km處的地面雷達(dá)站R(LR=4)測(cè)得火箭底部的仰角為43°.1s后,火箭到達(dá)B點(diǎn),此時(shí)測(cè)得火箭底部的仰角為45.72°.這枚火箭從A到B的平均速度是多少 (結(jié)果取小數(shù)點(diǎn)后兩位)?
(參考數(shù)據(jù):sin43°≈0.682,cos43°≈0.731,tan43°≈0.933,
sin45.72°≈0.716,cos45.72°≈0.698,tan45.72°≈1.025)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法正確的個(gè)數(shù)是( )
①a>0;②b>0;③c<0;④b2﹣4ac>0;⑤a+b+c=0.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2015隨州)甲騎摩托車從A地去B地,乙開汽車從B地去A地,同時(shí)出發(fā),勻速行駛,各自到達(dá)終點(diǎn)后停止,設(shè)甲、乙兩人間距離為s(單位:千米),甲行駛的時(shí)間為t(單位:小時(shí)),s與t之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:
①出發(fā)1小時(shí)時(shí),甲、乙在途中相遇;
②出發(fā)1.5小時(shí)時(shí),乙比甲多行駛了60千米;
③出發(fā)3小時(shí)時(shí),甲、乙同時(shí)到達(dá)終點(diǎn);
④甲的速度是乙速度的一半.
其中,正確結(jié)論的個(gè)數(shù)是( 。
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面推理過程:
如圖,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(______________________ ),
∴∠2 =∠CGD(等量代換).
∴CE∥BF(___________________________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD(________________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠BAD=90°,對(duì)角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)如果AD=4,BC=9,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象過點(diǎn)A(﹣1,0)和點(diǎn)C(0,3),對(duì)稱軸為直線x=1.
(1)求該二次函數(shù)的關(guān)系式和頂點(diǎn)坐標(biāo);
(2)結(jié)合圖象,解答下列問題:
①當(dāng)﹣1<x<2時(shí),求函數(shù)y的取值范圍.
②當(dāng)y<3時(shí),求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AD是∠BAC的角平分線,AE是△ABC的高.
(1)如圖1,若∠B=40°,∠C=62°,請(qǐng)說明∠DAE的度數(shù);
(2)如圖2(∠B<∠C),試說明∠DAE、∠B、∠C的數(shù)量關(guān)系;
(3)如圖3,延長AC到點(diǎn)F,∠CAE和∠BCF的角平分線交于點(diǎn)G,求∠G的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com