【題目】如圖,已知,且,點(diǎn)是射線上一動點(diǎn)(不與點(diǎn)重合),,分別平分和.交射線于點(diǎn),.
(1)求的度數(shù);
(2)當(dāng)點(diǎn)運(yùn)動到使時,求的度數(shù);
(3)在點(diǎn)運(yùn)動過程中,與之間是否存在一定數(shù)量關(guān)系?若存在,請寫出它們之間的數(shù)量關(guān)系,并說明理由;若不存在,請舉出反例.
【答案】(1);(2);(3),理由見解析.
【解析】
(1)由平行線的性質(zhì)可求得∠APM=130°,再根據(jù)角平分線的定義和整體思想可求得∠BPD的度數(shù);
(2)由平行線的性質(zhì)可得到∠PBA=∠BPM,由已知得出∠BPM=∠APD,得出∠APB=∠MPD,由(1)得:∠APM=130°,∠BPD=65°,即可得出∠APB=∠MPD=×65°=32.5°;
(3)由平行線的性質(zhì)得出∠ACP=∠CPM,∠ADP=∠DPM,由角平分線定義得出∠CPM=2∠DPM,即可得出∠PCA=2∠PDA.
解:(1)∵PM∥AN,
∴∠A+∠APM=180°,
∵∠A=50°,
∴∠APM=130°,
∵PB,PD分別平分∠APC和∠MPC,
∴∠BPC=∠APC,∠DPC=∠MPC,
∴∠BPD=∠BPC+∠DPC=(∠APC+∠MPC)=×130°=65°;
(2)∵PM∥AN,
∴∠PBA=∠BPM,
∵∠PBA=∠APD,
∴∠BPM=∠APD,
∴∠APB=∠MPD,
由(1)得:∠APM=130°,∠BPD=65°,
∴∠APB=∠MPD=×65°=32.5°;
(3)存在,∠PCA=2∠PDA,理由如下:
∵PM∥AN,
∴∠ACP=∠CPM,∠PDA=∠DPM,
∵PD平分∠MPC,
∴∠CPM=2∠DPM,
∴∠PCA=2∠PDA.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是直線l外一點(diǎn),A,B,C三點(diǎn)在直線l上,且PB⊥l于點(diǎn)B,∠APC=90°,則下列結(jié)論:①線段AP是點(diǎn)A到直線PC的距離;②線段BP的長是點(diǎn)P到直線l的距離;③PA,PB,PC三條線段中,PB最短;④線段PC的長是點(diǎn)P到直線l的距離,其中,正確的是( )
A. ②③ B. ①②③ C. ③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)45°時,如圖3,延長DB交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時,求線段DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.
(1)若該方程有兩個實(shí)數(shù)根,求m的最小整數(shù)值;
(2)若方程的兩個實(shí)數(shù)根為x1,x2,且(x1﹣x2)2+m2=21,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,剪兩張對邊平行且寬度相等的紙條隨意交叉疊放在一起,轉(zhuǎn)動其中一張,重合部分構(gòu)成一個四邊形,則下列結(jié)論中不一定成立的是( 。
A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,……按此規(guī)律,則第50個圖形中面積為1的正方形的個數(shù)為( )
A. 1322 B. 1323 C. 1324 D. 1325
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 某新建成學(xué)校舉行“美化綠化校園”活動,計(jì)劃購買A、B兩種花木共300棵,其中A花木每棵20元,B花木每棵30元.
(1)若購進(jìn)A,B兩種花木剛好用去7300元,則購買了A,B兩種花木各多少棵?
(2)如果購買B花木的數(shù)量不少于A花木的數(shù)量的1.5倍,且購買A、B兩種花木的總費(fèi)用不超過7820元,請問學(xué)校有哪幾種購買方案?哪種方案最省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了編撰祖國的優(yōu)秀傳統(tǒng)文化,某校組織了一次“詩詞大會”,小明和小麗同時參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個字組成一句唐詩,其答案為“山重水復(fù)疑無路”.
(1)小明回答該問題時,對第二個字是選“重”還是選“窮”難以抉擇,若隨機(jī)選擇其中一個,則小明回答正確的概率是 ;
(2)小麗回答該問題時,對第二個字是選“重”還是選“窮”、第四個字是選“富”還是選“復(fù)”都難以抉擇,若分別隨機(jī)選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com