【題目】在同一平面內(nèi),△ABC和△ABD如圖①放置,其中AB=BD.
小明做了如下操作:
將△ABC繞著邊AC的中點(diǎn)旋轉(zhuǎn)180°得到△CEA,將△ABD繞著邊AD的中點(diǎn)旋轉(zhuǎn)180°得到△DFA,如圖②,請(qǐng)完成下列問題:
(1)試猜想四邊形ABDF是什么特殊四邊形,并說(shuō)明理由;
(2)連接EF,CD,如圖③,求證:四邊形CDEF是平行四邊形.
【答案】
(1)解:四邊形ABDF是菱形.理由如下:
∵△ABD繞著邊AD的中點(diǎn)旋轉(zhuǎn)180°得到△DFA,
∴AB=DF,BD=FA,
∵AB=BD,
∴AB=BD=DF=FA,
∴四邊形ABDF是菱形
(2)證明:∵四邊形ABDF是菱形,
∴AB∥DF,且AB=DF,
∵△ABC繞著邊AC的中點(diǎn)旋轉(zhuǎn)180°得到△CEA,
∴AB=CE,BC=EA,
∴四邊形ABCE為平行四邊形,
∴AB∥CE,且AB=CE,
∴CE∥FD,CE=FD,
∴四邊形CDEF是平行四邊形
【解析】(1)根旋轉(zhuǎn)的性質(zhì)得AB=DF,BD=FA,由于AB=BD,所以AB=BD=DF=FA,則可根據(jù)菱形的判定方法得到四邊形ABDF是菱形;(2)由于四邊形ABDF是菱形,則AB∥DF,且AB=DF,再根據(jù)旋轉(zhuǎn)的性質(zhì)易得四邊形ABCE為平行四邊形,根據(jù)平行四邊形的性質(zhì)得AB∥CE,且AB=CE,
所以CE∥FD,CE=FD,所以可判斷四邊形CDEF是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D,E分別是的邊BC上兩點(diǎn),請(qǐng)你在下列三個(gè)式子,,中,選兩個(gè)作為條件,余下的一個(gè)作為結(jié)論,編寫一個(gè)說(shuō)理題,并進(jìn)行解答.
如圖,已知點(diǎn)D,E分別是的邊BC上兩點(diǎn)______,______,那么______嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,則一元二次方程ax2+bx+c=0( )
A.沒有實(shí)根
B.只有一個(gè)實(shí)根
C.有兩個(gè)實(shí)根,且一根為正,一根為負(fù)
D.有兩個(gè)實(shí)根,且一根小于1,一根大于2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣4,0),B(2,0),與y軸交于點(diǎn)C(0,2).
(1)求拋物線的解析式;
(2)若點(diǎn)D為該拋物線上的一個(gè)動(dòng)點(diǎn),且在直線AC上方,當(dāng)以A,C,D為頂點(diǎn)的三角形面積最大時(shí),求點(diǎn)D的坐標(biāo)及此時(shí)三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】相傳有個(gè)人不講究說(shuō)話藝術(shù)常引起誤會(huì),一天他擺宴席請(qǐng)客,他看到還有幾個(gè)人沒來(lái),就自言自語(yǔ):“怎么該來(lái)的還不來(lái)?”客人聽了心里想難道我們是不該來(lái)的,于是有一半客人走了.他一看十分著急,又說(shuō):“不該走的倒走了!”剩下的人一聽,是我們?cè)撟甙。∮钟惺O碌娜种娜穗x開了.他著急地一拍大腿,連說(shuō):“我說(shuō)的不是他們.”于是最后剩下的四個(gè)人也都告辭走了.聰明的你能知道剛開始來(lái)的客人個(gè)數(shù)是( )
A. 24 B. 18 C. 16 D. 15
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,四邊形ABCD是菱形,E是BD延長(zhǎng)線上一點(diǎn),F(xiàn)是DB延長(zhǎng)線上一點(diǎn),且DE=BF.請(qǐng)你以F為一個(gè)端點(diǎn),和圖中已標(biāo)明字母的某一點(diǎn)連成一條新的線段,猜想并證明它和圖中已有的某一條線段相等(只須證明一組線段相等即可).
(1)連接 ;
(2)猜想: = ;
(3)證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,B是線段AD上一動(dòng)點(diǎn),沿A→D→A以 2 cm/s的速度往返運(yùn)動(dòng)1次,C是線段BD的中點(diǎn),AD=10 cm,設(shè)點(diǎn)B的運(yùn)動(dòng)時(shí)間為t秒(0≤t≤10).
(1)當(dāng)t=2時(shí),
①AB=____cm;
②求線段CD的長(zhǎng)度;
(2)用含t的代數(shù)式表示運(yùn)動(dòng)過程中AB的長(zhǎng);
(3)在運(yùn)動(dòng)過程中,若AB的中點(diǎn)為E,則EC的長(zhǎng)是否變化?若不變,求出EC的長(zhǎng);若發(fā)生變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,OE,OD分別平分∠AOC和∠BOC,
(1)如果∠AOB=90°,∠BOC=38°,求∠DOE的度數(shù);
(2)如果∠AOB=α,∠BOC=β(α、β均為銳角,α>β),其他條件不變,求∠DOE;
(3)從(1)、(2)的結(jié)果中,你發(fā)現(xiàn)了什么規(guī)律,請(qǐng)寫出來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司擬為貧困山區(qū)建一所希望小學(xué),甲、乙兩個(gè)工程隊(duì)提交了投標(biāo)方案,若獨(dú)立完成該項(xiàng)目,則甲工程隊(duì)所用時(shí)間是乙工程隊(duì)的1.5倍;若甲、乙兩隊(duì)合作完成該項(xiàng)目,則共需72天.
(1)甲、乙兩隊(duì)單獨(dú)完成建校工程各需多少天?
(2)若由甲工程隊(duì)單獨(dú)施工,平均每天的費(fèi)用為0.8萬(wàn)元,為了縮短工期,該公司選擇了乙工程隊(duì),但要求其施工的總費(fèi)用不能超過甲工程隊(duì),求乙工程隊(duì)平均每天的施工費(fèi)用最多為多少萬(wàn)元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com