【題目】在面積都相等的所有三角形中,當(dāng)其中一個(gè)三角形的一邊長(zhǎng)時(shí),這條邊上的高

1)①求關(guān)于的函數(shù)表達(dá)式;

②當(dāng)時(shí),求的取值范圍;

2)小李說(shuō)其中有一個(gè)三角形的一邊與這邊上的高之和為小趙說(shuō)有一個(gè)三角形的一邊與這邊上的高之和為.你認(rèn)為小李和小趙的說(shuō)法對(duì)嗎?為什么?

【答案】1)①;②;(2)小趙的說(shuō)法正確,見(jiàn)解析

【解析】

1)①直接利用三角形面積求法進(jìn)而得出yx之間的關(guān)系;

②直接利用x3得出y的取值范圍;
2)直接利用x+y的值結(jié)合根的判別式得出答案.

:

為底,為高,

;

②當(dāng)x=3時(shí),y=2,
∴當(dāng)x3時(shí),y的取值范圍為:0y2

小趙的說(shuō)法正確.

理由如下:小李:

整理得,x2-4x+6=0,
∵△=42-4×60
∴一個(gè)三角形的一邊與這邊上的高之和不可能是4;

小趙:

小趙的說(shuō)法正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題滿分8分一個(gè)不透明的口袋中裝有2個(gè)紅球記為紅球1、紅球2、1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球搖勻.

1從中任意摸出1個(gè)球,恰好摸到紅球的概率是

2先從中任意摸出1個(gè)球,再?gòu)挠嘞碌?個(gè)球中任意摸出1個(gè)球,請(qǐng)用列舉法畫(huà)樹(shù)狀圖或列表求兩次都摸到紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,裕安中學(xué)體育訓(xùn)練中,一實(shí)心球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)刻畫(huà),斜坡可以用一次函數(shù)刻畫(huà),實(shí)心球的落點(diǎn)A的坐標(biāo)是().

(1)求二次函數(shù)解析式和二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);

(2)連接拋物線的最高點(diǎn)P與點(diǎn)O、A得△POA,求△POA的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四邊形ABCD是菱形,邊BCx軸上,點(diǎn)A(0,4),點(diǎn)B(3,0),雙曲線y=與直線BD交于點(diǎn)D、點(diǎn)E.

(1)求k的值;

(2)求直線BD的解析式;

(3)求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:

①ac<0②2a+b=0③4a+2b+c>0對(duì)任意實(shí)數(shù)x均有ax2+bx≥a+b

正確的結(jié)論序號(hào)為:______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,點(diǎn)C是直徑AB延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)C作⊙O的切線,切點(diǎn)為D,連結(jié)BD.

(1)求證:∠A=∠BDC;

(2)若CM平分∠ACD,且分別交AD、BD于點(diǎn)M、N,當(dāng)DM=1時(shí),求MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】怡然美食店的AB兩種菜品,每份成本均為14元,售價(jià)分別為20元、18元,這兩種菜品每天的營(yíng)業(yè)額共為1120元,總利潤(rùn)為280元.

1)該店每天賣(mài)出這兩種菜品共多少份?

2)該店為了增加利潤(rùn),準(zhǔn)備降低A種菜品的售價(jià),同時(shí)提高B種菜品的售價(jià),售賣(mài)時(shí)發(fā)現(xiàn),A種菜品售價(jià)每降0.5元可多賣(mài)1份;B種菜品售價(jià)每提高0.5元就少賣(mài)1份,如果這兩種菜品每天銷(xiāo)售總份數(shù)不變,那么這兩種菜品一天的總利潤(rùn)最多是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰梯形ABCD中,ABDC,ADBCCD,點(diǎn)EAB上一點(diǎn),連結(jié)CE,請(qǐng)?zhí)砑右粋(gè)你認(rèn)為合適的條件 ,使四邊形AECD為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB6,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)30°后得到△A1BC1,則陰影部分的面積為________

查看答案和解析>>

同步練習(xí)冊(cè)答案