【題目】如圖,在ABC中,點PQ分別是BC、AC邊上的點,PSACPRAB,若PRPS,則下列結(jié)論:①PA平分,ASAR;③QPAR;④△BRP≌△CPS;其中正確的結(jié)論有(

A. 4B. 3C. 2D. 1

【答案】B

【解析】

根據(jù)角平分線判定定理即可推出①,根據(jù)勾股定理即可推出②AR=AS,根據(jù)等腰三角形性質(zhì)推出∠QAP=QPA,推出∠QPA=BAP,根據(jù)平行線判定推出③QPAB即可;無法證明BRP≌△CSP故④錯誤.

PRAB,PSAC,PR=PS,

∴點P在∠A的平分線上,故①正確,

ARP=ASP=90°,

∴∠SAP=RAP,

RtARPRtASP中,由勾股定理得:AR2=AP2-PR2AS2=AP2-PS2,

AP=APPR=PS,

AR=AS,∴②正確;

AQ=QP,

∴∠QAP=QPA,

∵∠QAP=BAP,

∴∠QPA=BAP

QPAR,∴③正確;

BRPCSP中,缺少全等條件,故④錯誤,

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,AD,AEAF分別是△ABC的高、角平分線和中線.

1)對于下面的五個結(jié)論:①BC=2BF;②∠CAE=CAB;③BE=CE;④ADBC;⑤SAFB=SADC.其中錯誤的是______(只填序號);

2)若∠C=70°,∠ABC=28°,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小剛相約周末到雪蓮大劇院看演出,他們的家分別距離劇院1200m2000m,兩人分別從家中同時出發(fā),已知小明和小剛的速度比是3:4,結(jié)果小明比小剛提前4min到達(dá)劇院.求兩人的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐

已知,,都是不等于0的有理數(shù),若,求的值.

解:當(dāng)時,;當(dāng)時,,所以參照以上解答,試探究以下問題:

1)若,求的值

2)若,則的值為__________

3)由(1)、(2)試猜想,共有__________個不同的值,在這些不同的值中,最大的值和最小的值的差等于__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下面三行數(shù):

1)第①行數(shù)按什么規(guī)律排列?

2)第②③行數(shù)與第①行數(shù)分別有什么關(guān)系;

3)設(shè)分別為第①②③行的2012個數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的高中部在A校區(qū),初中部在B校區(qū),學(xué)校學(xué)生會計劃在3月12日植樹節(jié)當(dāng)天安排部分學(xué)生到郊區(qū)公園參加植樹活動.已知A校區(qū)的每位高中學(xué)生往返車費是6元,B校區(qū)的每位初中學(xué)生往返的車費是10元,要求初、高中均有學(xué)生參加,且參加活動的初中學(xué)生比參加活動的高中學(xué)生多4人,本次活動的往返車費總和不超過210元,求初、高中最多各有多少學(xué)生參加.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個大小不同的等腰直角三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,圖中AB=ACAD=AE,∠BAC=∠EAD=90°B,C,E在同一條直線上,連結(jié)DC

(1)圖2中的全等三角形是_______________,并給予證明(說明:結(jié)論中不得含有未標(biāo)識的字母);

2)指出線段DC和線段BE的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BAC=108°EF、MN分別是AB、AC的垂直平分線,點E、NBC上,則∠EAN等于( )

A. 72°B. 54°C. 36°D. 18°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠A=60°,BD,CE是△ABC的兩條角平分線,且BD,CE交于點F,如圖所示,用等式表示BE,BC,CD這三條線段之間的數(shù)量關(guān)系,并證明你的結(jié)論;

曉東通過觀察,實驗,提出猜想:BE+CD=BC,他發(fā)現(xiàn)先在BC上截取BM,使BM=BE,連接FM,再利用三角形全等的判定和性質(zhì)證明CM=CD即可.

1)下面是小東證明該猜想的部分思路,請補充完整;

①在BC上截取BM,使BM=BE,連接FM,則可以證明△BEF______全等,判定它們?nèi)鹊囊罁?jù)是______;

②由∠A=60°,BDCE是△ABC的兩條角平分線,可以得出∠EFB=______°;

2)請直接利用①,②已得到的結(jié)論,完成證明猜想BE+CD=BC的過程.

查看答案和解析>>

同步練習(xí)冊答案