【題目】如圖,拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn),且拋物線(xiàn)經(jīng)過(guò),兩點(diǎn),與軸交于點(diǎn).
(1)若直線(xiàn)經(jīng)過(guò)、兩點(diǎn),求直線(xiàn)和拋物線(xiàn)的解析式;
(2)設(shè)點(diǎn)為拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),聯(lián)結(jié)、,若是以為直角邊的直角三角形,求此時(shí)點(diǎn)的坐標(biāo);
【答案】(1)的解析式:,拋物線(xiàn)解析式:;(2),
【解析】
(1)根據(jù)對(duì)稱(chēng)軸及A點(diǎn)坐標(biāo)得出B點(diǎn)坐標(biāo),從而得出直線(xiàn)BC解析式,再由A、B、C三點(diǎn)坐標(biāo)得出拋物線(xiàn)解析式;(2)分別過(guò)B、C兩點(diǎn)作BC的垂線(xiàn),得出垂線(xiàn)的解析式,與拋物線(xiàn)解析式聯(lián)立解出P點(diǎn).
解:(1)∵對(duì)稱(chēng)軸為x=2,且拋物線(xiàn)經(jīng)過(guò)A(-1,0),
∴B(5,0).
把B(5,0),C(0,-5)分別代入y=mx+n得 ,
解得:,
∴直線(xiàn)BC的解析式為y=x-5.
設(shè)y=a(x-5)(x+1),把點(diǎn)C的坐標(biāo)代入得:-5a=-5,解得:a=1,
∴拋物線(xiàn)的解析式為:y=x2-4x-5.
(2)①過(guò)點(diǎn)C作CP1⊥BC,交拋物線(xiàn)于點(diǎn)P1,如圖,
則直線(xiàn)CP1的解析式為y=-x-5,由 ,
解得: (舍去);,
∴P1(3,-8);
②過(guò)點(diǎn)B作BP2⊥BC,交拋物線(xiàn)于P2,如圖,
則BP2的解析式為y=-x+5,由,
解得:(舍去),,
∴P2(-2,7);
綜上,,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在所給格點(diǎn)圖中,畫(huà)出△ABC作下列變換后的三角形,并寫(xiě)出所得到的三角形三個(gè)頂點(diǎn)的坐標(biāo).
(1)沿y軸正方向平移2個(gè)單位后得到△A1B1C1;
(2)關(guān)于y軸對(duì)稱(chēng)后得到△A2B2C2.
(3)以點(diǎn)B為位似中心,放大到2倍后得到△A3B3C3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.在Rt△ABC中,∠ABC=90°,點(diǎn)D是斜邊上的中點(diǎn),點(diǎn)P在AB上,PE⊥BD于E,PF⊥AC于F,若AB=6,BC=3,則PE+PF=( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下列條件求關(guān)于x的二次函數(shù)的解析式
(1)圖象經(jīng)過(guò)(0,1)(1,0)(3,0)
(2)當(dāng)x=1時(shí),y=0; x=0時(shí),y= -2,x=2 時(shí),y=3
(3)拋物線(xiàn)頂點(diǎn)坐標(biāo)為(-1,-2)且通過(guò)點(diǎn)(1,10)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABDC內(nèi)接于⊙O,AB是⊙O的直徑,OD⊥BC于點(diǎn)E.
(1)請(qǐng)你寫(xiě)出兩個(gè)不相同的結(jié)論(不添加輔助線(xiàn));
(2)連接AD,若BE=4,AC=6,求線(xiàn)段AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙A與y軸相切于原點(diǎn)O,平行于x軸的直線(xiàn)交⊙A于M、M兩點(diǎn),若點(diǎn)M的坐標(biāo)是(-4,-2),則點(diǎn)N的坐標(biāo)為( )
A.(-1,-2) B.(1,2) C.(-1.5,-2) D.(1.5,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn) (a≠0)的對(duì)稱(chēng)軸為直線(xiàn)x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O直徑,CD為⊙O的切線(xiàn),C為切點(diǎn),過(guò)A作CD的垂線(xiàn),垂足為D.
(1)求證:AC平分∠BAD;
(2)若⊙O半徑為5,CD=4,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=﹣x2+bx+c與一直線(xiàn)相交于A(﹣1,0),C(2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.
(1)求拋物線(xiàn)及直線(xiàn)AC的函數(shù)關(guān)系式;
(2)若P是拋物線(xiàn)上位于直線(xiàn)AC上方的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為t;
①當(dāng)S△ACP=S△ACN時(shí),求點(diǎn)P的坐標(biāo);
②是否存在點(diǎn)P,使得△ACP是以AC為斜邊的直角三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若拋物線(xiàn)的對(duì)稱(chēng)軸與直線(xiàn)AC相交于點(diǎn)B,E為直線(xiàn)AC上的任意一點(diǎn),過(guò)點(diǎn)E作EF∥BD交拋物線(xiàn)于點(diǎn)F,以B,D,E,F為頂點(diǎn)的四邊形能否為平行四邊形?若能,請(qǐng)直接寫(xiě)出點(diǎn)E的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com