在下列性質(zhì)中,平行四邊形不一定具有的是

[  ]

A.對角相等
B.內(nèi)角和
C.對角互補
D.鄰角互補
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在八年級上冊我們已經(jīng)知道三角形的中位線具有如下性質(zhì):
三角形的中位線平行于第三邊,并且等于它的一半.
如圖所示,已知△ABC和下列四種說法:
①D是AB中點;②E是AC中點;③DE=
12
BC;④DE∥BC.
請你以其中的兩種說法為條件(①和②不能同時作為條件),其余兩種說法為結(jié)論,構(gòu)造一個命題;并判定你所構(gòu)造的命題是否正確.如果正確請說明理由;如果不正確,請舉出反例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在探究矩形的性質(zhì)時,小明得到了一個有趣的結(jié)論:矩形兩條對角線的平方和等于四條邊的平方和.如圖1,在矩形ABCD中,由勾股定理,得AC2=AB2+BC2,BD2=AB2+AD2,又CD=AB,AD=BC,所以AC2+BD2=AB2+BC2+CD2+AD2=2(AB2+BC2).
小亮對菱形進行了探究,也得到了同樣的結(jié)論,于是小亮猜想:任意平行四邊形兩條對角線的平方和等于四條邊的平方和.請你解決下列問題:
(1)如圖2,已知:四邊形ABCD是菱形,求證:AC2+BD2=2(AB2+BC2);
(2)你認為小亮的猜想是否成立,如果成立,請利用圖3給出證明;如果不成立,請舉反例說明;
(3)如圖4,在△ABC中,BC、AC、AB的長分別為a、b、c,AD是BC邊上的中線.試求AD的長.(結(jié)果用a,b,c表示)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:伴你學數(shù)學  八年級 上冊 題型:044

在下列性質(zhì)中,平行四邊形具有的是________,矩形具有的是________,菱形具有的是________,正方形具有的是________.

(1)四條邊都相等

(2)對角線互相平分

(3)對角線相等

(4)對角線互相垂直

(5)四個角都是直角

(6)每一條對角線平分一組對角

(7)對邊相等且平行

(8)有兩條對稱軸

(將相應性質(zhì)的序號填在相應的橫線上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在探究矩形的性質(zhì)時,小明得到了一個有趣的結(jié)論:矩形兩條對角線的平方和等于四條邊的平方和.如圖1,在矩形ABCD中,由勾股定理,得AC2=AB2+BC2,BD2=AB2+AD2,又CD=AB,AD=BC,所以AC2+BD2=AB2+BC2+CD2+AD2=2(AB2+BC2).
小亮對菱形進行了探究,也得到了同樣的結(jié)論,于是小亮猜想:任意平行四邊形兩條對角線的平方和等于四條邊的平方和.請你解決下列問題:
(1)如圖2,已知:四邊形ABCD是菱形,求證:AC2+BD2=2(AB2+BC2);
(2)你認為小亮的猜想是否成立,如果成立,請利用圖3給出證明;如果不成立,請舉反例說明;
(3)如圖4,在△ABC中,BC、AC、AB的長分別為a、b、c,AD是BC邊上的中線.試求AD的長.(結(jié)果用a,b,c表示)

查看答案和解析>>

科目:初中數(shù)學 來源:2011年安徽省馬鞍山市成功學校中考數(shù)學一模試卷(解析版) 題型:解答題

在探究矩形的性質(zhì)時,小明得到了一個有趣的結(jié)論:矩形兩條對角線的平方和等于四條邊的平方和.如圖1,在矩形ABCD中,由勾股定理,得AC2=AB2+BC2,BD2=AB2+AD2,又CD=AB,AD=BC,所以AC2+BD2=AB2+BC2+CD2+AD2=2(AB2+BC2).
小亮對菱形進行了探究,也得到了同樣的結(jié)論,于是小亮猜想:任意平行四邊形兩條對角線的平方和等于四條邊的平方和.請你解決下列問題:
(1)如圖2,已知:四邊形ABCD是菱形,求證:AC2+BD2=2(AB2+BC2);
(2)你認為小亮的猜想是否成立,如果成立,請利用圖3給出證明;如果不成立,請舉反例說明;
(3)如圖4,在△ABC中,BC、AC、AB的長分別為a、b、c,AD是BC邊上的中線.試求AD的長.(結(jié)果用a,b,c表示)

查看答案和解析>>

同步練習冊答案