【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結論:
①AD∥BC;
②∠ACB=2∠ADB;
③∠ADC=90°﹣∠ABD;
④BD平分∠ADC;
⑤∠BDC=∠BAC.
其中正確的結論有( )
A.2個 B.3個 C.4個 D.5個
【答案】C
【解析】
試題分析:根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠EAC=∠ABC+∠ACB=2∠ABC,根據(jù)角平分線的定義可得∠EAC=2∠EAD,然后求出∠EAD=∠ABC,再根據(jù)同位角相等,兩直線平行可得AD∥BC,判斷出①正確;
根據(jù)兩直線平行,內(nèi)錯角相等可得∠ADB=∠CBD,再根據(jù)角平分線的定義可得∠ABC=2∠CBD,從而得到∠ACB=2∠ADB,判斷出②正確;
根據(jù)兩直線平行,內(nèi)錯角相等可得∠ADC=∠DCF,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和和角平分線的定義整理可得∠ADC=90°﹣∠ABD,判斷出③正確;
根據(jù)三角形的外角性質與角平分線的定義表示出∠DCF,然后整理得到∠BDC=∠BAC,判斷出⑤正確,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠CBD=∠ADB,∠ABC與∠BAC不一定相等,所以∠ADB與∠BDC不一定相等,判斷出④錯誤.
解:由三角形的外角性質得,∠EAC=∠ABC+∠ACB=2∠ABC,
∵AD是∠EAC的平分線,
∴∠EAC=2∠EAD,
∴∠EAD=∠ABC,
∴AD∥BC,故①正確,
∴∠ADB=∠CBD,
∵BD平分∠ABC,
∴∠ABC=2∠CBD,
∵∠ABC=∠ACB,
∴∠ACB=2∠ADB,故②正確;
∵AD∥BC,
∴∠ADC=∠DCF,
∵CD是∠ACF的平分線,
∴∠ADC=∠ACF=(∠ABC+∠BAC)=(180°﹣∠ACB)=(180°﹣∠ABC)=90°﹣∠ABD,故③正確;
由三角形的外角性質得,∠ACF=∠ABC+∠BAC,∠DCF=∠BDC+∠DBC,
∵BD平分∠ABC,CD平分∠ACF,
∴∠DBC=∠ABC,∠DCF=∠ACF,
∴∠BDC+∠DBC=(∠ABC+∠BAC)=∠ABC+∠BAC=∠DBC+∠BAC,
∴∠BDC=∠BAC,故⑤正確;
∵AD∥BC,
∴∠CBD=∠ADB,
∵∠ABC與∠BAC不一定相等,
∴∠ADB與∠BDC不一定相等,
∴BD平分∠ADC不一定成立,故④錯誤;
綜上所述,結論正確的是①②③⑤共4個.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】基本事實:“若ab=0,則a=0或b=0”.一元二次方程x2-x-2=0可通過因式分解化為(x-2)(x+1)=0,由基本事實得x-2=0或x+1=0,即方程的解為x=2或x=-1.
(1)、試利用上述基本事實,解方程:2x2-x=0:
(2)、若(x2+y2)(x2+y2-1)-2=0,求x2+y2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給出下列說法:①三條線段組成的圖形叫三角形;②三角形的角平分線是射線;③三角形的高所在的直線交于一點,這一點不在三角形內(nèi)就在三角形外;④任何一個三角形都有三條高、三條中線、三條角平分線;⑤三角形的三條角平分線交于一點,且這點在三角形內(nèi).正確的說法有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是AD的中點,∠EBC的平分線交CD于點F.將△DEF沿EF折疊,點D恰好落在BE上M點處,延長BC、EF交于點N, 有下列四個結論:① DF=CF;②BF⊥EN;③△BEN是等邊三角形;④S△BEF=3S△DEF. 其中,正確的結論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com