【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=90°,E是AB上一點,且DE⊥CE.若AD=1,BC=2,CD=3,則CE與DE的數(shù)量關(guān)系正確的是( )
A.CE= DE
B.CE= DE
C.CE=3DE
D.CE=2DE
【答案】B
【解析】解:過點D作DH⊥BC,
∵AD=1,BC=2,
∴CH=1,
DH=AB= = =2 ,
∵AD∥BC,∠ABC=90°,
∴∠A=90°,
∵DE⊥CE,
∴∠AED+∠BEC=90°,
∵∠AED+∠ADE=90°,
∴∠ADE=∠BEC,
∴△ADE∽△BEC,
∴ ,
設(shè)BE=x,則AE=2 ,
即 ,
解得x= ,
∴ ,
∴CE= DE,
故選B.
過點D作DH⊥BC,利用勾股定理可得AB的長,利用相似三角形的判定定理可得△ADE∽△BEC,設(shè)BE=x,由相似三角形的性質(zhì)可解得x,易得CE,DE 的關(guān)系.本題主要考查了相似三角形的性質(zhì)及判定,構(gòu)建直角三角形,利用方程思想是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】歷史上的數(shù)學(xué)巨人歐拉最先把關(guān)于的多項式用記號的形式來表示(可用其它字母,但不同的字母表示不同的多項式),例如,把=某數(shù)時的多項式的值用來表示.
例如時多項式的值記為,
已知,
(1)求的值
(2)若,求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y=的圖象交于A,B兩點,且與x軸交于點C,點A的坐標(biāo)為(2,1).
(1)求m及k的值;
(2)求點C的坐標(biāo),并結(jié)合圖象寫出不等式組0<x+m≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達(dá)小島的北偏西45°的C處,則該船行駛的速度為海里/小時.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中的位置如圖所示.
在圖中畫出與關(guān)于y軸對稱的圖形,并寫出頂點、、的坐標(biāo);
若將線段平移后得到線段,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC、BD相交于點O,且AC=BD,E、F分別相交是AB、CD的中點,EF分別交BD、AC于點G、H。求證:OG=OH。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)與圖象的交于點A,若點A的坐標(biāo)為.
點B的坐標(biāo)為______;
若點P為第一象限內(nèi)雙曲線上不同于點B的任意一點.
設(shè)直線PA交x軸于點M,直線PB交x軸于點N,求證;
當(dāng)P的坐標(biāo)為時,連結(jié)PO延長交于C,求證四邊形PACB為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與雙曲線相交于點、,與x軸相交于C點.
求點A、B的坐標(biāo)及直線的解析式;
求的面積;
觀察第一象限的圖象,直接寫出不等式的解集;
如圖,在x軸上是否存在點P,使得的和最。咳舸嬖,請說明理由并求出P點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2的正三角形ABC中,P0是BC邊的中點,一束光線自P0發(fā)出射到AC上的點P1后,依次反射到AB、BC上的點P2和P3(反射角等于入射角).
(1)若∠P2P3B=45°,CP1=;
(2)若 <BP3< ,則P1C長的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com