【題目】如圖1,直角梯形ABCD中,ADBC,∠ADC=90°,AD=8,BC=6,點(diǎn)M從點(diǎn)D出發(fā),以每秒2個單位長度的速度向點(diǎn)A運(yùn)動,同時,點(diǎn)N從點(diǎn)B出發(fā),以每秒1個單位長度的速度向點(diǎn)C運(yùn)動.其中一個動點(diǎn)到達(dá)終點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動.過點(diǎn)NNPAD于點(diǎn)P,連接ACNP于點(diǎn)Q,連接MQ.設(shè)運(yùn)動時間為t秒.

1AM= AP= .(用含t的代數(shù)式表示)

2)當(dāng)四邊形ANCP為平行四邊形時,求t的值

3)如圖2,將AQM沿AD翻折,得AKM,是否存在某時刻t,

①使四邊形AQMK為為菱形,若存在,求出t的值;若不存在,請說明理由

②使四邊形AQMK為正方形,求 AC的長.

【答案】(1)8﹣2t,2+t;(2)t=2;(3)

【解析】

1)由DM=2t,根據(jù)AM=AD-DM即可求出AM=8-2t;先證明四邊形CNPD為矩形,得出DP=CN=6-t,則AP=AD-DP=2+t
2)根據(jù)四邊形ANCP為平行四邊形時,可得6-t=8-6-t),解方程即可;
3))①由NPADQP=PK,可得當(dāng)PM=PA時有四邊形AQMK為菱形,列出方程6-t-2t=8-6-t),求解即可,
②要使四邊形AQMK為正方形,由∠ADC=90°,可得∠CAD=45°,所以四邊形AQMK為正方形,則CD=AD,由AD=8,可得CD=8,利用勾股定理求得AC即可.

解:(1)如圖1

∵四邊形CNPD為矩形 DP=CN=BCBN=6t,

AP=ADDP=8﹣(6t=2+t

故答案為:82t,2+t

2)∵四邊形ANCP為平行四邊形時,CN=AP

6t=8﹣(6t),解得t=2,

3)①存在時刻t=1,使四邊形AQMK為菱形.理由如下:

NPAD,QP=PK

∴當(dāng)PM=PA時有四邊形AQMK為菱形

6t2t=8﹣(6t),解得t=1,

②要使四邊形AQMK為正方形.

∵∠ADC=90°,∴∠CAD=45°

∴四邊形AQMK為正方形,則CD=AD,

AD=8,CD=8,

AC.故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=的圖象如圖,點(diǎn)A0位于坐標(biāo)原點(diǎn),點(diǎn)A1,A2A3…Any軸的正半軸上,點(diǎn)B1,B2,B3…Bn在二次函數(shù)位于第一象限的圖象上,點(diǎn)C1,C2C3…Cn在二次函數(shù)位于第二象限的圖象上,四邊形A0B1A1C1,四邊形A1B2A2C2,四邊形A2B3A3C3四邊形An1BnAnCn都是菱形,A0B1A1=A1B2A1=A2B3A3…=An1BnAn

=60°,菱形An1BnAnCn的周長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個不相等的實(shí)數(shù)根.

(1)求m的取值范圍;

(2)寫出一個滿足條件的m的值,并求此時方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A1,3),與x軸的一個交點(diǎn)B4,0),直線y2=mx+nm≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:

①2a+b=0;②abc0方程ax2+bx+c=3有兩個相等的實(shí)數(shù)根;拋物線與x軸的另一個交點(diǎn)是(﹣1,0);當(dāng)1x4時,有y2y1

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x22x+3的圖象與x軸交于A.B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

(1)求點(diǎn)A. B.C的坐標(biāo);

(2)判斷以點(diǎn)A、C、D為頂點(diǎn)的三角形的形狀,并說明理由;

(3)點(diǎn)M(m,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A.B重合),過點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)PPQAB交拋物線于點(diǎn)Q,過點(diǎn)QQNx軸于點(diǎn)N,可得矩形PQNM.如圖,點(diǎn)P在點(diǎn)Q左邊,試用含m的式子表示矩形PQNM的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB xm,花園面積S.

1)求S關(guān)于x的函數(shù)關(guān)系式,求x的取值范圍;

2)若在P處有一棵樹與墻CDAD的距離分別是15m6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y=的圖象如圖所示,A,P為該圖象上的點(diǎn),且關(guān)于原點(diǎn)成中心對稱.在△PAB中,PB∥y軸,AB∥x軸,PB與AB相交于點(diǎn)B.若△PAB的面積大于12,則關(guān)于x的方程(a-1)x2-x+=0的根的情況是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】節(jié)能又環(huán)保的油電混合動力汽車,既可以用油做動力行駛,也可以用電做動力行駛,某品牌油電混合動力汽車從甲地行駛到乙地,若完全用油做動力行駛,則費(fèi)用為80元;若完全用電做動力行駛,則費(fèi)用為30元,已知汽車行駛中每千米用油費(fèi)用比用電費(fèi)用多0.5元.

(1)求:汽車行駛中每千米用電費(fèi)用是多少元?甲、乙兩地的距離是多少千米?

(2)若汽車從甲地到乙地采用油電混合動力行駛,且所需費(fèi)用不超過50元,則至少需要用電行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.已知點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)O為坐標(biāo)原點(diǎn),OC=3OA,拋物線C1的頂點(diǎn)為G.

(1)求出拋物線C1的解析式,并寫出點(diǎn)G的坐標(biāo);

(2)如圖2,將拋物線C1向下平移k(k0)個單位,得到拋物線C2,設(shè)C2與x軸的交點(diǎn)為A′、B′,頂點(diǎn)為G′,當(dāng)A′B′G′是等邊三角形時,求k的值:

(3)在(2)的條件下,如圖3,設(shè)點(diǎn)M為x軸正半軸上一動點(diǎn),過點(diǎn)M作x軸的垂線分別交拋物線C1、C2于P、Q兩點(diǎn),試探究在直線y=﹣1上是否存在點(diǎn)N,使得以P、Q、N為頂點(diǎn)的三角形與AOQ全等,若存在,直接寫出點(diǎn)M,N的坐標(biāo):若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案