【題目】1)如圖1.在△ABC中,B=60°DAC和∠ACE的角平分線交于點(diǎn)O,則∠O=     °,

2)如圖2,若∠B,其他條件與(1)相同,請用含α的代數(shù)式表示∠O的大小;

3)如圖3,若∠B,,則∠P=     (用含α的代數(shù)式表示).

【答案】1)∠O=60°;(290°-;(3

【解析】

1)由題意利用角平分線的性質(zhì)和三角形內(nèi)角和為180°進(jìn)行分析求解;

2)根據(jù)題意設(shè)∠BAC=β,∠ACB=γ,則α+β+γ=180°,利用角平分線性質(zhì)和外角定義找等量關(guān)系,用含α的代數(shù)式表示∠O的大;

3)利用(2)的條件可知n=2時(shí),∠P=,再將2替換成n即可分析求解.

解:(1)因?yàn)椤?/span>DAC∠ACE的角平分線交于點(diǎn)O,且∠B=60°

所以,

∠O=60°.

2)設(shè)∠BAC=β,∠ACB=γ,則α+β+γ=180°

∵∠ACE△ABC的外角,

∴∠ACE=∠B+∠BAC=α+β

∵CO平分∠ACE

同理可得:

∵∠O+∠ACO+∠CAO=180°,

3∵∠B=α,,

由(2)可知n=2時(shí),有∠P==,將2替換成n即可,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1=﹣2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.下列判斷:

①當(dāng)x>0時(shí),y1>y2; ②當(dāng)x<0時(shí),x值越大,M值越;

③使得M大于2的x值不存在; ④使得M=1的x值是

其中正確的是( 。

  A.①②  B.①④  C.②③  D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D、EF分別是邊AB、ACBC的中點(diǎn),且BC=2AF。

1)求證:四邊形ADEF為矩形;

2)若∠C=30°、AF=2,寫出矩形ADEF的周長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A1-1),B2,3),點(diǎn)Px軸上一點(diǎn),當(dāng)|PA-PB|的值最大時(shí),點(diǎn)P的坐標(biāo)為(    

A.-1,0B.,0C.,0D.1,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:一個(gè)自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱它為下滑數(shù)(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個(gè),恰好是下滑數(shù)的概率為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校團(tuán)委決定對甲、乙、丙三位候選人進(jìn)行民主投票、筆試、面試考核,從中推選一名擔(dān)任學(xué)生會(huì)主席.已知參加民主投票的學(xué)生為200名,每人當(dāng)且僅當(dāng)推薦一名候選人,民主投票結(jié)果如下扇形統(tǒng)計(jì)圖所示,筆試和面試的成績?nèi)缦陆y(tǒng)計(jì)表所示.

筆試

78

80

85

面試

92

75

70

1)甲、乙、丙的得票數(shù)依次是______、____________;

2)若民主投票得一票記1分,學(xué)校將民主投票、筆試、面試三項(xiàng)得分按343的比例確定三名候選人的考核成績,成績最高當(dāng)選,請通過計(jì)算確定誰當(dāng)選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線l1y=kx+4y軸交于點(diǎn)A,與x軸交于點(diǎn)B

1)請直接寫出點(diǎn)A的坐標(biāo):______;

2)點(diǎn)P為線段AB上一點(diǎn),且點(diǎn)P的橫坐標(biāo)為m,現(xiàn)將點(diǎn)P向左平移3個(gè)單位,再向下平移4個(gè)單位,得點(diǎn)P′在射線AB上.

①求k的值;

②若點(diǎn)My軸上,平面內(nèi)有一點(diǎn)N,使四邊形AMBN是菱形,請求出點(diǎn)N的坐標(biāo);

③將直線l1繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)45°至直線l2,求直線l2的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠B45°,∠ACB60°,AB16ADBC,垂足為D,∠ACB的平分線交AD于點(diǎn)E,則AE的長為(  )

A.B.4C.D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某消防隊(duì)在一居民樓前進(jìn)行演習(xí),消防員利用云梯成功救出點(diǎn)B處的求救者后,又發(fā)現(xiàn)點(diǎn)B正上方點(diǎn)C處還有一名求救者.在消防車上點(diǎn)A處測得點(diǎn)B和點(diǎn)C的仰角分別是45°65°,點(diǎn)A距地面2.5米,點(diǎn)B距地面10.5.為救出點(diǎn)C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)

查看答案和解析>>

同步練習(xí)冊答案