【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據(jù):

根據(jù)以上數(shù)據(jù),估算袋中的白棋子數(shù)量為( 。

A. 60B. 50C. 40D. 30

【答案】C

【解析】

利用已知提供的數(shù)據(jù)求出黑棋子的比例,進而假設出白棋子個數(shù),列出方程,解方程即可得出白棋子個數(shù).

解:根據(jù)試驗提供的數(shù)據(jù)得出:

黑棋子的比例為:(1+3+0+2+3+4+2+1+1+3÷10020%

所以白棋子比例為:120%80%,

設白棋子有x枚,由題意,

80%,

x0.8x+10),

x0.8x+8

0.2x8,

所以x40,

經(jīng)檢驗,x40是原方程的解,

即袋中的白棋子數(shù)量約40顆.

故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC,C=90°,AC=3,BC=4,點E,F分別在邊BC,AC上,沿EF所在的直線折疊∠C,使點C的對應點D恰好落在邊AB上,若△EFC和△ABC相似,則AD的長為___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,D、E兩點分別在BCAD上,且AD為∠BAC的角平分線。若∠ABE=C,AE:ED=2:1,BDEABC的面積比為何?

A. 1:6B. 1:9C. 2:13D. 2:15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形窗戶邊框ABCD由矩形AEFD,矩形BNME,矩形CFMN組成,其中AEBE=13.已知制作一個窗戶邊框的材料的總長是6米,設BC=x(),窗戶邊框ABCD的面積為S(2)

(1)①用x的代數(shù)式表示AB

②求x的取值范圍.

(2)求當S達到最大時,AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點坐標分別是O0,0),A3,0),B4,4),C(-2,3),將點O,AB,C的橫坐標、縱坐標都乘以-2.

(1)畫出以變化后的四個點為頂點的四邊形;

(2)由(1)得到的四邊形與四邊形OABC位似嗎?如果位似,指出位似中心及與原圖形的相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,DAC上一點,EBD上一點,∠A=CBD=DCE.

(1)求證:△ABC∽△CDE;

(2)若BD=3DE,試求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax2經(jīng)過點A(21)

(1)求這個函數(shù)的解析式;

(2)畫出函數(shù)的圖像,寫出拋物線上點A關(guān)于y 軸的對稱點B 的坐標;

(3)拋物線上是否存在點C,使△ABC的面積等于△OAB面積的一半,若存在,求出C點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AE平分∠BAD,交BC于點E,BF平分∠ABC,交AD于點F,AEBF交于點P,連接EF,PD

1)求證:四邊形ABEF是菱形;

2)若AB=4,AD=6,∠ABC=60°,求PD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,B=90°,AB=12mmBC=24mm,動點P從點A開始沿邊ABB2mm/s的速度移動(不與點B重合),動點Q從點B開始沿邊BCC4mm/s的速度移動(不與點C重合).如果P、Q分別從A、B同時出發(fā),設運動的時間為xs,四邊形APQC的面積為ymm2

(1)yx之間的函數(shù)關(guān)系式;

(2)求自變量x的取值范圍;

(3)四邊形APQC的面積能否等于172mm2.若能,求出運動的時間;若不能,說明理由.

查看答案和解析>>

同步練習冊答案