【題目】計(jì)算:a2(b1) 2結(jié)果正確的是(

A.a2b22b+1B.a2b22b1

C.a2b2+2b1D.a2b2+2b+1

【答案】C

【解析】

利用完全平方公式化簡(jiǎn),去括號(hào)即可得到結(jié)果.

解:a2(b1) 2= a2 b21+2b,

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC△EFP的邊FP也在直線 l上,邊EF與邊AC重合,且EF=FP

1)在圖1中,請(qǐng)你通過觀察、測(cè)量,猜想并寫出ABAP所滿足的數(shù)量關(guān)系和位置關(guān)系;

2)將△EFP沿直線l向左平移到圖2的位置時(shí),EPAC于點(diǎn)Q,連結(jié)AP,

BQ.猜想并寫出BQ AP 所滿足的數(shù)量關(guān)系和位置關(guān)系,請(qǐng)證明你的猜想;

3AP,BQ .你認(rèn)為(2)中所猜想的BQ AP的數(shù)量關(guān)系和位置關(guān)系還成立嗎?若成立,給出證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作等腰直角三角形ADE,AD=AE,∠DAE=90.解答下列問題:

(1) 如果AB=AC,∠BAC=90.

①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖乙,線段CE、BD之間的位置關(guān)系為,數(shù)量關(guān)系為.(不用證明)

②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖丙,①中的結(jié)論是否仍然成立,為什么?

(2) 如果AB≠AC,∠BAC≠90,點(diǎn)D在線段BC上運(yùn)動(dòng).

試探究:當(dāng)△ABC滿足一個(gè)什么條件時(shí),CE⊥BD(點(diǎn)C、E重合除外)?畫出相應(yīng)的圖形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A1,1),B3,2),將點(diǎn)A向左平移兩個(gè)單位,再向上平移4個(gè)單位得到點(diǎn)C

1)寫出點(diǎn)C坐標(biāo);

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,Rt△ACB 中,C=90°,點(diǎn)DAC上,CBD=∠A,過A、D兩點(diǎn)的圓的圓心OAB上.

1)利用直尺和圓規(guī)在圖1中畫出O(不寫作法,保留作圖痕跡,并用黑色水筆把線條描清楚);

2)判斷BD所在直線與(1)中所作的O的位置關(guān)系,并證明你的結(jié)論;

3)設(shè)OAB于點(diǎn)E,連接DE,過點(diǎn)EEFBCF為垂足,若點(diǎn)D是線段AC的黃金分割點(diǎn)(即),如圖2,試說明四邊形DEFC是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊A1C1C2的周長(zhǎng)為1,作C1D1A1C2D1,在C1C2的延長(zhǎng)線上取點(diǎn)C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊A2C2C3;作C2D2A2C3D2,在C2C3的延長(zhǎng)線上取點(diǎn)C4,使D2C4=D2C2,連接D2C4,以C3C4為邊作等邊A3C3C4;且點(diǎn)A1,A2A3,都在直線C1C2同側(cè),如此下去,則A1C1C2,A2C2C3A3C3C4,,AnCnCn+1的周長(zhǎng)和為______.(n≥2,且n為整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥ABE,若AC=6,BC=8,CD=3

1)求DE的長(zhǎng);

2)求△ADB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是(

A.a3+a4a7B.a3a6a9C.2m5m7mD.a3+a33a3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙、丙三名同學(xué)中隨機(jī)抽取環(huán)保志愿者,求下列事件的概率:

1)抽取1名,恰好是甲;

2)抽取2名,甲在其中.

查看答案和解析>>

同步練習(xí)冊(cè)答案