【題目】先閱讀下列的解答過程,然后作答:

形如的化簡,只要我們找到兩個數(shù)a、b使a+b=m,ab=n,這樣()2+()2=m·=n,那么便有==± (a>b) .例如:化簡解:首先把化為,這里m=7,n=12;由于4+3=7,4×3=12,即()2+()2=7·=

===2+

由上述例題的方法化簡:(1) (2) (3)

【答案】(1)(2)(3)

【解析】試題分析: 先把各題中的無理式變成的形式,再根據(jù)范例分別求出各題中的a、b,即可求解.

試題解析:

(1) = = - ;

(2) = = = -

(3) = =

點睛: 主要考查二次根式根號內含有根號的式子化簡.根據(jù)二次根式的乘除法法則進行二次根式根號內含有根號的式子化簡.二次根式根號內含有根號的式子化簡主要利用了完全平方公式,所以一般二次根式根號內含有根號的式子化簡是符合完全平方公式的特點的式子.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】關于x的方程(x-1)2=a有實數(shù)根,則a的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P的邊OB上的一點。

過點POA的垂線,垂足為H;

過點POB的垂線,交OA于點C;

線段PH的長度是點P   的距離,_____   是點C到直線OB的距離。因為直線外一點到直線上各點連接的所有線段中,垂線段最短,所以線段PCPH、OC這三條線段大小關系是       。(用“<”號連接)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關部門決定降低坡度,使新坡面的坡度為1:

(1)求新坡面的坡角a;

(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆橋?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016浙江省舟山市第24題)小明的爸爸和媽媽分別駕車從家同時出發(fā)去上班,爸爸行駛到甲處時,看到前面路口時紅燈,他立即剎車減速并在乙處停車等待,爸爸駕車從家到乙處的過程中,速度v(m/s)與時間t(s)的關系如圖1中的實線所示,行駛路程s(m)與時間t(s)的關系如圖2所示,在加速過程中,s與t滿足表達式s=at2

(1)根據(jù)圖中的信息,寫出小明家到乙處的路程,并求a的值;

(2)求圖2中A點的縱坐標h,并說明它的實際意義;

(3)爸爸在乙處等代理7秒后綠燈亮起繼續(xù)前行,為了節(jié)約能源,減少剎車,媽媽駕車從家出發(fā)的行駛過程中,速度v(m/s)與時間t(s)的關系如圖1中的折線OBC所示,行駛路程s(m)與時間t(s)的關系也滿足s=at2,當她行駛到甲處時,前方的綠燈剛好亮起,求此時媽媽駕車的行駛速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)題意列出方程.

(1)一個數(shù)的3的差等于最大的一位數(shù),求這個數(shù);

(2)從正方形的鐵皮上截去2 cm寬的一個長方形條,余下的面積是80 cm2,那么原來的正方形鐵皮的邊長是多少?

(3)某商店規(guī)定購買超過15 000元的物品可以采用分期付款方式付款,顧客可以先付3 000以后每月付1 500元.王叔叔想用分期付款的方式購買價值19 500元的電腦,他需要用多長時間才能付清全部貨款?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在以下現(xiàn)象中,屬于平移的是( 。
①在擋秋千的小朋友;②打氣筒打氣時,活塞的運動;③鐘擺的擺動;④傳送帶上,瓶裝飲料的移動.
A.①②
B.①③
C.②③
D.②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1x軸上,再將△AB1C1繞點B1順時針旋轉到△A1B1C2的位置,點C2x軸上,將△A1B1C2繞點C2順時針旋轉到△A2B2C2的位置,點A2x軸上,依次進行下去….若點A,0),B(0,2),則點B2016的坐標為( 。

A. (4032 ,2) B. (6048,2) C. (4032,0) D. (6048,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,OA=OB=OC=6,過點A的直線AD交BC于點D,交y軸與點G,△ABD的面積為△ABC面積的.

(1)直接寫出點D的坐標;

(2)過點C作CE⊥AD,交AB交于F,垂足為E.

①求證:OF=OG;(3分) ②求點F的坐標.

(3)在(2)的條件下,在第一象限內是否存在點P,使△CFP為等腰直角三角形,若存在,直接寫出點P坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案