【題目】我們把分子為1的分?jǐn)?shù)叫做單位分?jǐn)?shù),如 , ,任何一個(gè)單位分?jǐn)?shù)都可以拆分成兩個(gè)不同的單位分?jǐn)?shù)的和,如, ,

1)根據(jù)對(duì)上述式子的觀察,你會(huì)發(fā)現(xiàn),則a=________,b=________;

2)進(jìn)一步思考,單位分?jǐn)?shù)n是不小于2的正整數(shù)),則x=________(用n的代數(shù)式表示)

3)計(jì)算:

【答案】16;30;(2nn+1);(3.

【解析】試題分析:(1)觀察算式可知,從左到右,前兩個(gè)分?jǐn)?shù)的分母是連續(xù)的兩個(gè)自然數(shù),第三個(gè)分?jǐn)?shù)的分母為前兩個(gè)分?jǐn)?shù)的分母的積,從而即可得

(2)根據(jù)(1)中發(fā)現(xiàn)的規(guī)律,即可寫(xiě)出;

(3)根據(jù)發(fā)現(xiàn)的規(guī)律進(jìn)行變形后計(jì)算即可得.

試題解析:1根據(jù)已知 , ,

可得 所以a=6,b=30,

故答案為:6,30;

(2)根據(jù)(1)中觀察到的規(guī)律可知x=n(n+1),

故答案為:n(n+1);

3)原式=1=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】5克鹽溶于95克水中,鹽占鹽水的_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】元旦期間,為了滿足潁上縣百姓的消費(fèi)需要,某大型商場(chǎng)計(jì)劃用170000元購(gòu)進(jìn)一批家電,這批家里的進(jìn)價(jià)和售價(jià)如表:

類別

彩電

冰箱

洗衣機(jī)

進(jìn)價(jià)(元/臺(tái))

2000

1600

1000

售價(jià)(元/臺(tái))

2300

1800

1100

若在現(xiàn)有資金允許的范圍內(nèi),購(gòu)買(mǎi)表中三類家電共100臺(tái),其中彩電臺(tái)數(shù)是冰箱臺(tái)數(shù)的2倍,設(shè)該商場(chǎng)購(gòu)買(mǎi)冰箱x臺(tái).

(1)用含x的代數(shù)式表示洗衣機(jī)的臺(tái)數(shù).

(2)商場(chǎng)至多可以購(gòu)買(mǎi)冰箱多少臺(tái)?

(3)購(gòu)買(mǎi)冰箱多少臺(tái)時(shí),能使商場(chǎng)銷售完這批家電后獲得的利潤(rùn)最大?最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)(a2b) 2(a2b) 2A,則A_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)An,2)與B-3m)關(guān)于y軸對(duì)稱,則n-m等于(

A.-1B.-5C.1D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)分別為A(﹣1,﹣1),B(﹣3,3),C(﹣4,1)

(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱的△A1B1C1 , 并寫(xiě)出點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo);
(2)畫(huà)出△ABC繞點(diǎn)A按逆時(shí)針旋轉(zhuǎn)90°后的△AB2C2 , 并寫(xiě)出點(diǎn)C的對(duì)應(yīng)點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角三角形ABC的直角邊AB=6,BC=8,將直角三角形ABC沿邊BC的方向平移到三角形DEF的位置,DEAC于點(diǎn)G,BE=2,三角形CEG的面積為13.5,下列結(jié)論:

①三角形ABC平移的距離是4; ②EG=4.5;

③AD∥CF; ④四邊形ADFC的面積為6

其中正確的結(jié)論是( )

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下面的說(shuō)理過(guò)程補(bǔ)充完整:

已知:如圖,∠1+2=180°,3=B,試判斷∠AED與∠C的關(guān)系,并說(shuō)明理由.

解:∠AED=C.

理由:∵∠1+ADG=180°(平角定義),∠1+2=180°(已知).

∴∠2=ADG.(_____________)

EFAB(______________).

∴∠3=AED(_____________).

∵∠3=B(已知),

∴∠B=________(________________)

DEBC(__________________).

∴∠AED=C(_________________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2﹣2x+3與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.

(1)請(qǐng)直接寫(xiě)出點(diǎn)A,C,D的坐標(biāo);
(2)如圖(1),在x軸上找一點(diǎn)E,使得△CDE的周長(zhǎng)最小,求點(diǎn)E的坐標(biāo);
(3)如圖(2),F(xiàn)為直線AC上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得△AFP為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案