如圖1所示,已知:在矩形ABCD中,AB=6,點(diǎn)P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當(dāng)AD=13時(shí),求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點(diǎn),過點(diǎn)M作MN∥BC交PC于點(diǎn)N,分別過點(diǎn)M,N作ME⊥BC于點(diǎn)E,NF⊥BC于點(diǎn)F,并且矩形MEFN和矩形ABCD的長(zhǎng)與寬之比相等,求MN.

【答案】分析:(1)若∠BPC=90°,則∠BPA和∠PCD同為∠DPC的余角,故∠BPA=∠PCD,而∠A、∠D都是直角,由此可證得:△ABP∽△DPC.
(2)由于AD∥BC,則∠PBC=∠APB,那么只需求出∠APB的正切值即可,關(guān)鍵是求AP的長(zhǎng);可設(shè)AP為x,用x可表示出DP的長(zhǎng),根據(jù)(1)所得相似三角形的比例線段,即可求得x即AP的值,進(jìn)而可得到∠APB的正切值,由此得解.
(3)易得AB、AD的長(zhǎng),即可得到矩形的長(zhǎng)和寬的比例關(guān)系,若設(shè)ME=x,則MN=2ME=2x,可過P作BC的垂線,設(shè)垂足為H,交MN于G;那么PG=6-x,易證得△PMN∽△PBC,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得x的值,進(jìn)而可求出MN的長(zhǎng).(當(dāng)ME=2MN時(shí),方法同上).
解答:(1)證明:∵∠BPC=90°,∠D=90°,
∴∠BPA+∠DPC=∠PCD+∠DPC=90°,
∴∠APB=∠PCD;
又∵∠A=∠D=90°,
∴△ABP∽△DPC.

(2)解:設(shè)AP=x,則PD=AD-AP=13-x;
由(1)知:△ABP∽△DPC,得:
,即,化簡(jiǎn)得:
x2-13x+36=0,解得x=4,x=9;
在Rt△APB中,當(dāng)AP=4時(shí),tan∠APB==;
當(dāng)AP=9時(shí),tan∠APB===;
由于AD∥BC,則∠APB=∠PBC,
故∠PBC的正切值為

(3)解:過P作PH⊥BC于H,交MN于G,則PG⊥MN;
由題意知:AB=6,AD=AP+PD=12,即AD=2AB;
①當(dāng)MN=2ME時(shí),設(shè)ME=x,則MN=2x,PG=6-x;
由于MN∥BC,則△PMN∽△PBC,得:
,即;
解得:x=3,故MN=2x=6;
②當(dāng)ME=2MN時(shí),設(shè)MN=m,則ME=2m,PG=6-2m,同①可得:
,即;
解得:m=2.4,即MN=2.4;
綜上所述,MN的值為6或2.4.
點(diǎn)評(píng):此題重點(diǎn)考查的是相似三角形的判定和性質(zhì),涉及到的知識(shí)點(diǎn)有:矩形的性質(zhì)、銳角三角函數(shù)等知識(shí);本題難度雖然不大,但關(guān)鍵在于(2)(3)題都要把各種情況考慮到,以免漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,已知:在矩形ABCD中,AB=6,點(diǎn)P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當(dāng)AD=13時(shí),求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點(diǎn),過點(diǎn)M作MN∥BC交PC于點(diǎn)N,分別過點(diǎn)M,N作ME⊥BC于點(diǎn)E,NF⊥BC于點(diǎn)F,并且矩形MEFN和矩形ABCD的長(zhǎng)與寬之比相等,求MN.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1所示,已知:在矩形ABCD中,AB=6,點(diǎn)P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當(dāng)AD=13時(shí),求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點(diǎn),過點(diǎn)M作MN∥BC交PC于點(diǎn)N,分別過點(diǎn)M,N作ME⊥BC于點(diǎn)E,NF⊥BC于點(diǎn)F,并且矩形MEFN和矩形ABCD的長(zhǎng)與寬之比相等,求MN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年廣東省廣州市從化市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖1所示,已知:在矩形ABCD中,AB=6,點(diǎn)P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當(dāng)AD=13時(shí),求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點(diǎn),過點(diǎn)M作MN∥BC交PC于點(diǎn)N,分別過點(diǎn)M,N作ME⊥BC于點(diǎn)E,NF⊥BC于點(diǎn)F,并且矩形MEFN和矩形ABCD的長(zhǎng)與寬之比相等,求MN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省南平市初中畢業(yè)綜合測(cè)試(解析版) 題型:解答題

(2010•南平模擬)如圖1所示,已知:在矩形ABCD中,AB=6,點(diǎn)P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當(dāng)AD=13時(shí),求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點(diǎn),過點(diǎn)M作MN∥BC交PC于點(diǎn)N,分別過點(diǎn)M,N作ME⊥BC于點(diǎn)E,NF⊥BC于點(diǎn)F,并且矩形MEFN和矩形ABCD的長(zhǎng)與寬之比相等,求MN.

查看答案和解析>>

同步練習(xí)冊(cè)答案