【題目】如下圖,在△ABC中,∠ACB90°DAB的中點(diǎn),以DC為直徑的⊙O交△ABC的邊于G,FE點(diǎn).求證:(1)∠A=∠GEF;(2)△BDFFEC.

【答案】1)見(jiàn)解析;(2)見(jiàn)解析

【解析】

1)由CD是⊙O的直徑,所以∠DFC=∠ACB90°,則DFAC,由平行線(xiàn)的性質(zhì)可得∠A=∠BDF,再由圓周角定理得∠BDF=GEF,即可得∠A=GEF;
2)連接DE,可證出四邊形DECF是矩形,根據(jù)矩形的性質(zhì)得DFECEFCD,再由直角三角形斜邊上的中線(xiàn)得EFCD=ABDB,根據(jù)HL即可得RtBDFRtFEC

證明:(1)∵CD是⊙O直徑,

∴∠DFC90°又∠ACB90°

DFAC,

∴∠A=∠BDF,

∵∠BDF=GEF(圓周角定理),

∴∠A=∠GEF

2)連接DE,

∵四邊形DECF內(nèi)接于⊙O,

ACB90°,

∴∠EDF=∠DFC=∠ACB90°,

∴四邊形DECF是矩形,

DFECEFCD,又DAB的中點(diǎn),

EFCD=ABDB,

RtBDFRtFEC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)所示,為矩形的邊上一點(diǎn),動(dòng)點(diǎn),同時(shí)從點(diǎn)出發(fā),點(diǎn)沿折線(xiàn)運(yùn)動(dòng)到點(diǎn)時(shí)停止,點(diǎn)沿運(yùn)動(dòng)到點(diǎn)時(shí)停止,它們運(yùn)動(dòng)的速度都是秒,設(shè)、同時(shí)出發(fā)秒時(shí),的面積為.已知的函數(shù)關(guān)系圖象如圖(2)(曲線(xiàn)為拋物線(xiàn)的一部分)則下列結(jié)論正確的是(

圖(1 圖(2

A.B.當(dāng)是等邊三角形時(shí),

C.當(dāng)時(shí),D.當(dāng)的面積為時(shí),的值是或秒

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖中的小方格都是邊長(zhǎng)為1的正方形,ABC的頂點(diǎn)和O點(diǎn)都在正方形的頂點(diǎn)上.

1)以點(diǎn)O為位似中心,在方格圖中將ABC放大為原來(lái)的2倍,得到A1B1C1;

2)將A1B1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的A2B1C2;

3)在(2)的旋轉(zhuǎn)過(guò)程中,點(diǎn)A1的運(yùn)動(dòng)路徑長(zhǎng)為  ,邊A1C1掃過(guò)的區(qū)域面積為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點(diǎn)P,連結(jié)EF、EO,若DE=DPA=45°.

(1)求⊙O的半徑;

(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB<AD,D=30°,CD=4,以AB為直徑的⊙OBC于點(diǎn)E,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y有最大值4,且圖象與x軸兩交點(diǎn)間的距離是8,對(duì)稱(chēng)軸為x=﹣3,此二次函數(shù)的解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)yax22ax+c的圖象經(jīng)過(guò)點(diǎn)C0,﹣2),頂點(diǎn)D的坐標(biāo)為(1,﹣),與x軸交于A、B兩點(diǎn).

1)求拋物線(xiàn)的解析式;

2)連接ACE為直線(xiàn)AC上一點(diǎn),當(dāng)△AOC∽△AEB時(shí),求點(diǎn)E的坐標(biāo)和的值.

3)點(diǎn)F 0,y)是y軸上一動(dòng)點(diǎn),當(dāng)y為何值時(shí),FC+BF的值最。⑶蟪鲞@個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在函數(shù)學(xué)習(xí)中,我們經(jīng)歷了確定函數(shù)表達(dá)式﹣﹣利用函數(shù)圖象研究其性質(zhì)﹣﹣運(yùn)用函數(shù)解決問(wèn)題的學(xué)習(xí)過(guò)程.在畫(huà)函數(shù)圖象時(shí),我們通過(guò)描點(diǎn)或平移的方法畫(huà)出了所學(xué)的函數(shù)圖象.同時(shí)我們也學(xué)習(xí)了絕對(duì)值的意義,結(jié)合上面經(jīng)歷的學(xué)習(xí)過(guò)程,現(xiàn)在來(lái)解決下面的問(wèn)題:在函數(shù)y|kx1|+b中,當(dāng)x2時(shí),y=﹣3;x0時(shí),y=﹣2

1)求這個(gè)函數(shù)的表達(dá)式;

2)用列表描點(diǎn)的方法畫(huà)出該函數(shù)的圖象;請(qǐng)你先把下面的表格補(bǔ)充完整,然后在下圖所給的坐標(biāo)系中畫(huà)出該函數(shù)的圖象;

x

6

4

2

0

2

4

6

y

   

0

1

2

3

2

   

3)觀察這個(gè)函數(shù)圖象,并寫(xiě)出該函數(shù)的一條性質(zhì);

4)已知函數(shù)y x0)的圖象如圖所示,與y|kx1|+b的圖象兩交點(diǎn)的坐標(biāo)分別是(2+42),(22,﹣1),結(jié)合你畫(huà)的函數(shù)圖象,直接寫(xiě)出|kx1|+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)圖象如圖所示,對(duì)稱(chēng)軸為過(guò)點(diǎn)且平行于軸的直線(xiàn),則下列結(jié)論中正確的是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案