在平面直角坐標(biāo)系x、y中,過原點O及點A(0,2)、C(6,0)作矩形OABC,∠AOC的平分線交AB于點D.點P從點O出發(fā),以每秒個單位長度的速度沿射線OD方向移動;同時點Q從點O出發(fā),以每秒2個單位長度的速度沿x軸正方向移動.設(shè)移動時間為t秒.
(1)當(dāng)點P移動到點D時,求出此時t的值;
(2)當(dāng)t為何值時,△PQB為直角三角形;
(3)已知過O、P、Q三點的拋物線解析式為(t>0).問是否存在某一時刻t,將△PQB繞某點旋轉(zhuǎn)180°后,三個對應(yīng)頂點恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請說明理由.
(1)2(2)當(dāng)t=2或或時,△PQB為直角三角形(3)存在t=或t=2,將△PQB繞某點旋轉(zhuǎn)180°后,三個對應(yīng)頂點恰好都落在上述拋物線上
【解析】解:(1)∵四邊形OABC是矩形,∴∠AOC=∠OAB=90°。
∵OD平分∠AOC,∴∠AOD=∠DOQ=45°。
∴在Rt△AOD中,∠ADO=45°!郃O=AD=2,OD=2。
∵點P的速度為每秒個單位長度,∴t=(秒)。
(2)要使△PQB為直角三角形,顯然只有∠PQB=90°或∠PBQ=90°,
如圖,作PG⊥OC于點G,在Rt△POG中,
∵∠POQ=45°,∴∠OPG=45°。
∵OP=t,∴OG=PG=t!帱cP(t,t)。
又∵Q(2t,0),B(6,2),
根據(jù)勾股定理可得:
。
①若∠PQB=90°,則有PQ2+BQ2=PB2,即: ,
整理得:4t2﹣8t=0,解得:t1=0(舍去),t2=2,∴t=2。
②若∠PBQ=90°,則有PB2+QB2=PQ2,即: ,
整理得:t2﹣10t+20=0,解得:。
∴當(dāng)t=2或或時,△PQB為直角三角形。
(3)存在這樣的t值。理由如下:
將△PQB繞某點旋轉(zhuǎn)180°,三個對應(yīng)頂點恰好都落在拋物線上,則旋轉(zhuǎn)中心為PQ中點,此時四邊形PBQB′為平行四邊形。
∵PO=PQ,由P(t,t),Q(2t,0),知旋轉(zhuǎn)中心坐標(biāo)可表示為(t, t)。
∵點B坐標(biāo)為(6,2),∴點B′的坐標(biāo)為(3t﹣6,t﹣2)。
代入,得:2t2﹣13t+18=0,解得:t1=,t2=2。
∴存在t=或t=2,將△PQB繞某點旋轉(zhuǎn)180°后,三個對應(yīng)頂點恰好都落在上述拋物線上。
(1)首先根據(jù)矩形的性質(zhì)求出DO的長,進(jìn)而得出t的值。
(2)要使△PQB為直角三角形,顯然只有∠PQB=90°或∠PBQ=90°,進(jìn)而利用勾股定理分別分析得出,再分別就∠PQB=90°和∠PBQ=90°討論,求出符合題意的t值即可。
(3)存在這樣的t值,若將△PQB繞某點旋轉(zhuǎn)180°,三個對應(yīng)頂點恰好都落在拋物線上,則旋轉(zhuǎn)中心為PQ中點,此時四邊形PBQB′為平行四邊形,根據(jù)平行四邊形的性質(zhì)和對稱性可求出t的值。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com