【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)A(0,4),B(1,0),C(5,0)

(1)求拋物線的解析式和對(duì)稱軸;

(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使△PAB的周長(zhǎng)最?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)該拋物線有一點(diǎn)Dxy),使得SABCSDBC,求點(diǎn)D的坐標(biāo).

【答案】(1)yx=3;(2)P(3,);(3)D的坐標(biāo)為(6,4).

【解析】

(1)因?yàn)閽佄锞經(jīng)過(guò)點(diǎn)B(1,0),C(5,0),可以假設(shè)拋物解析式為y=a(x-1)(x-5),把A(0,4)代入即可解決問(wèn)題,對(duì)稱軸根據(jù)圖象即可解決.

(2)連接AC與對(duì)稱軸的交點(diǎn)即為點(diǎn)P,此時(shí)PAB周長(zhǎng)最。蟪鲋本AC的解析式即可解決問(wèn)題;

(3)根據(jù)面積相等且底邊相等的三角形的高也應(yīng)該相等得出D的縱坐標(biāo)為±4,代入拋物線的解析式即可求得.

(1)∵拋物線經(jīng)過(guò)點(diǎn)B(1,0),C(5,0),

∴可以假設(shè)拋物解析式為yax﹣1)(x﹣5),把A(0,4)代入得4=5a,

a

∴拋物線解析式為yx﹣1)(x﹣5)=x2x+4.

拋物線對(duì)稱軸x=3.

(2)連接AC與對(duì)稱軸的交點(diǎn)即為點(diǎn)P,此時(shí)PAB周長(zhǎng)最。

設(shè)直線AC的解析式為ykx+b

A(0,4),C(5,0),

,

解得,

∴直線AC解析式為y=﹣x+4,

x=3代入得,y

∴交點(diǎn)P為(3,);

(3)根據(jù)題意得D的縱坐標(biāo)為±4,

y=4代入yx2x+4得,x2x+4=4,

解得x=06,

y=﹣4代入yx2x+4得,x2﹣6x+10=0,

b2﹣4ac=36﹣4×1×10<0,

∴無(wú)解,

(0,4)為A點(diǎn)(舍),D的坐標(biāo)為(6,4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),yx的增大而增大,且2≤x≤1時(shí),y的最大值為9,則a的值為

A. 12 B.

C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,有張除了正面圖案不同,其余都相同的圖片.

以上四張圖片所示的立體圖形中,主視圖是矩形的有________;(填字母序號(hào))

將這四張圖片背面朝上混勻,從中隨機(jī)抽出一張后放回,混勻后再隨機(jī)抽出一張.求兩次抽出的圖片所示的立體圖形中,主視圖都是矩形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A. 為了解蘇州市中學(xué)生的睡眠情況,應(yīng)該采用普查的方式

B. 某種彩票的中獎(jiǎng)機(jī)會(huì)是,則買張這種彩票一定會(huì)中獎(jiǎng)

C. 一組數(shù)據(jù),,,的眾數(shù)和中位數(shù)都是

D. 若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)(4,3),(3,0).

(1)求b、c的值;

(2)求出該二次函數(shù)圖象的頂點(diǎn)坐標(biāo)和對(duì)稱軸,并在所給坐標(biāo)系中畫出該函數(shù)的圖象

(3)該函數(shù)的圖象經(jīng)過(guò)怎樣的平移得到y=x2的圖象?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)(k為常數(shù),k≠0)的圖象經(jīng)過(guò)點(diǎn)A(2,3).

(1)求這個(gè)函數(shù)的解析式;

(2)判斷點(diǎn)B(1,6),C(3,2)是否在這個(gè)函數(shù)的圖象上,并說(shuō)明理由;

(3)當(dāng)3<x<1時(shí),求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(2,2)是雙曲線上一點(diǎn),點(diǎn)B是雙曲線上位于點(diǎn)A右下方的另一點(diǎn),C是x軸上的點(diǎn),且△ABC是以∠B為直角的等腰直角三角形,則點(diǎn)B的坐標(biāo)是__________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為20元/千克.市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w (千克)與銷售價(jià)x (元/千克)有如下關(guān)系:w=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤(rùn)為y (元).

(1)求y與x之間的函數(shù)關(guān)系式,自變量x的取值范圍;

(2)當(dāng)銷售價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?

(3)如果物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不得高于28元/千克,該農(nóng)戶想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為多少元?(參考關(guān)系:銷售額=售價(jià)×銷量,利潤(rùn)=銷售額﹣成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,, 的中點(diǎn).點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng);點(diǎn)同時(shí)以每秒3個(gè)單位長(zhǎng)度的速度從 點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng).點(diǎn)停止運(yùn)動(dòng)時(shí),點(diǎn)也隨之停止運(yùn)動(dòng).當(dāng)運(yùn)動(dòng)時(shí)間秒時(shí),以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.的值為_________.

查看答案和解析>>

同步練習(xí)冊(cè)答案