將拋物線的圖象先向右平移4個單位,再向下平移3個單位所得的解析式為( )
A.B.
C.D.
D
原拋物線的頂點為(0,0),先向右平移4個單位,再向下平移3個單位,那么新拋物線的頂點為(4,-3);可設新拋物線的解析式為y=3(x-h)2+k,代入得:y=3(x-4)2-3,故選D.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

在一定條件下,若物體運動的路程s(米)與時間t(秒)的關系式為s=5t2+2t,則當t=4時,該物體所經(jīng)過的路程為( 。
A.28米B.48米C.68米D.88米

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標為(4,0).

(1)求拋物線的解析式;
(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標;
(3)若點M是線段BC下方的拋物線上一點,求△MBC的面積的最大值,并求出此時M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一次函數(shù)的圖象與x軸和y軸分別交于點A(6,0)和B(0,),線段AB的垂直平分線交x軸于點C,交AB于點D.
(1)試確定這個一次函數(shù)關系式;
(2)求過A、B、C三點的拋物線的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

有一種產品的質量分成6種不同檔次,若工時不變,每天可生產最低檔次的產品40件;如果每提高一個檔次,每件利潤可增加1元,但每天要少生產2件產品。
⑴若最低檔次的產品每件利潤17元時,生產哪一種檔次的產品的利潤最大?并求最大利潤。
⑵由于市場價格浮動,生產最低檔次的產品每件利潤可以從8元到24元不等,那么生產哪種檔次的產品所得利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若二次函數(shù)的圖像過三點,則大小關系正確的是()
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,有長為24m的籬笆,一面利用墻(墻的最大可用長度a為10m),圍成中間隔有一道籬笆的長方形花圃.設花圃的寬AB為xm,面積為Sm2

(1)求S與x的函數(shù)關系式;
(2)如果要圍成面積為45m2的花圃,AB的長是多少米?
(3)能圍成面積比45 m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如果拋物線y=x2-6x+c-2的頂點到x軸的距離是3,那么c的值等于(   )
A  8         B  14        C  8或14       D  -8或-14

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知拋物線與x軸相交時兩交點間的線段長為4,則m的值是    

查看答案和解析>>

同步練習冊答案