【題目】如圖,在△ABC中,D為BC的中點,E為AB上一點,DF⊥DE交AC于點F,延長ED至點G,使GD=ED,連接CG.
(1)求證:BE=CG;
(2)求證:BE+CF>EF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某沿海城市A接到臺風(fēng)警報,在該城市正南方向260 km的B處有一臺風(fēng)中心,沿BC方向以15 km/h的速度向C移動,已知城市A到BC的距離AD=100 km,那么臺風(fēng)中心經(jīng)過多長時間從B點移動到D點?如果在距臺風(fēng)中心30 km的圓形區(qū)域內(nèi)都將受到臺風(fēng)的影響,正在D點休息的游人在接到臺風(fēng)警報后的幾小時內(nèi)撤離才可以免受臺風(fēng)的影響?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠1=∠2,EG 平分∠AEC.
(1)如圖1,∠MAE=50°,∠FEG=15°,∠NCE=80°.試判斷 EF 與 CD 的位置關(guān)系,并說明理由.
(2)如圖2,∠MAE=135°,∠FEG=30°,當(dāng) AB∥CD 時,求∠NCE 的度數(shù);
(3)如圖2,試寫出∠MAE、∠FEG、∠NCE 之間滿足什么關(guān)系時,AB∥CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD是△ABC的中線,E是AD上的一點,且AE=2DE,連接BE并延長交AC于點F.
(1)求證:AF=FC;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平安路與幸福路是兩條平行的道路,且都與新興大街垂直,老街與小米胡同垂直,書店位于老街與小米胡同的交口處.如果小強(qiáng)同學(xué)站在平安路與新興大街交叉路口,準(zhǔn)備去書店,按圖中的街道行走,最近的路程為( )
A. 300m B. 400m C. 500m D. 700m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)問題中,我們常用幾何方法解決代數(shù)問題,借助數(shù)形結(jié)合的方法使復(fù)雜問題簡單化.
材料一:我們知道|a|的幾何意義是:數(shù)軸上表示數(shù)a的點到原點的距離;|a﹣b|的幾何意義是:數(shù)軸上表示數(shù)a,b的兩點之間的距離;|a+b|的幾何意義是:數(shù)軸上表示數(shù)a,﹣b的兩點之間的距離;根據(jù)絕對值的幾何意義,我們可以求出以下方程的解.
(1)|x﹣3|=4
解:由絕對值的幾何意義知:
在數(shù)軸上x表示的點到3的距離等于4
∴x1=3+4=7,x2=3﹣4=﹣1
(2)|x+2|=5
解:∵|x+2|=|x﹣(﹣2)|,∴其絕對值的幾何意義為:在數(shù)軸上x表示的點到﹣2的距離等于5.∴x1=﹣2+5=3,x2=﹣2﹣5=﹣7
材料二:如何求|x﹣1|+|x+2|的最小值.
由|x﹣1|+|x+2|的幾何意義是數(shù)軸上表示數(shù)x的點到表示數(shù)1和﹣2兩點的距離的和,要使和最小,則表示數(shù)x的這點必在﹣2和1之間(包括這兩個端點)取值.
∴|x﹣1|+|x+2|的最小值是3;由此可求解方程|x﹣1|+|x+2|=4,把數(shù)軸上表示x的點記為點P,由絕對值的幾何意義知:當(dāng)﹣2≤x≤1時,|x﹣1|+|x+2|恒有最小值3,所以要使|x﹣1|+|x+2|=4成立,則點P必在﹣2的左邊或1的右邊,且到表示數(shù)﹣2或1的點的距離均為0.5個單位.
故方程|x﹣1|+|x+2|=4的解為:x1=﹣2﹣0.5=﹣2.5,x2=1+0.5=1.5.
閱讀以上材料,解決以下問題:
(1)填空:|x﹣3|+|x+2|的最小值為 ;
(2)已知有理數(shù)x滿足:|x+3|+|x﹣10|=15,有理數(shù)y使得|y﹣3|+|y+2|+|y﹣5|的值最小,求x﹣y的值.
(3)試找到符合條件的x,使|x﹣1|+|x﹣2|+…+|x﹣n|的值最小,并求出此時的最小值及x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一輛列車在某次運行中速度(千米/小時)關(guān)于時間(分鐘)的圖象,根據(jù)圖象回答下列問題.
(1)列車共運行了多少分鐘?
(2)列車開動后,勻速行駛了幾分鐘?第3分鐘時的速度是多少?
(3)列車的速度從0千米/小時加速到300千米/小時,共用了多長時間?
(4)列車從第幾分鐘開始減速?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提升學(xué)生的藝術(shù)素養(yǎng),學(xué)校計劃開設(shè)四門藝術(shù)選修課:A.書法;B.繪畫;C.樂器;D.舞蹈.為了解學(xué)生對四門功課的喜歡情況,在全校范圍內(nèi)隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).將數(shù)據(jù)進(jìn)行整理,并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有多少人?扇形統(tǒng)計圖中∠α的度數(shù)是多少?
(2)請把條形統(tǒng)計圖補充完整;
(3)學(xué)校為舉辦2018年度校園文化藝術(shù)節(jié),決定從A.書法;B.繪畫;C.樂器;D.舞蹈四項藝術(shù)形式中選擇其中兩項組成一個新的節(jié)目形式,請用列表法或樹狀圖求出選中書法與樂器組合在一起的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com