【題目】(模型建立)

1)如圖1,等腰直角三角形ABC中,∠ACB90°CBCA,直線ED經(jīng)過點(diǎn)C,過AADED于點(diǎn)D,過BBEED于點(diǎn)E

求證:BEC≌△CDA

(模型應(yīng)用)

2)① 已知直線l1yx8與坐標(biāo)軸交于點(diǎn)A、B,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45至直線l2,如圖2,求直線l2的函數(shù)表達(dá)式;

如圖3,長(zhǎng)方形ABCO,O為坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(8,-6),點(diǎn)AC分別在坐標(biāo)軸上,點(diǎn)P是線段BC上的動(dòng)點(diǎn),點(diǎn)D是直線y=-3x6上的動(dòng)點(diǎn)且在y軸的右側(cè).若APD是以點(diǎn)D為直角頂點(diǎn)的等腰直角三角形,請(qǐng)直接寫出點(diǎn)D的坐標(biāo).

【答案】1)證明見解析;(2)①y=-7x-42;② (2,0)或(5,-9

【解析】

1)根據(jù)ABC為等腰直角三角形,ADED,BEED,可判定ACD≌△CBE;

2)①過點(diǎn)BBCAB,交l2C,過CCDy軸于D,根據(jù)CBD≌△BAO,得出BD=AO=6,CD=OB=8,求得C-8,14),最后運(yùn)用待定系數(shù)法求直線l2的函數(shù)表達(dá)式;②根據(jù)APD是以點(diǎn)D為直角頂點(diǎn)的等腰直角三角形,當(dāng)點(diǎn)D是直線y=-3x+6上的動(dòng)點(diǎn)且在y軸的右側(cè)時(shí),分兩種情況:當(dāng)點(diǎn)D在矩形AOCB的內(nèi)部或邊上時(shí),當(dāng)點(diǎn)D在矩形AOCB的外部時(shí),設(shè)Dx,-3x+6),分別根據(jù)ADE≌△DPF,得出AE=DF,據(jù)此列出方程進(jìn)行求解即可.

解:(1)證明:如圖1,∵△ABC為等腰直角三角形,
CB=CA,∠ACD+BCE=90°
又∵ADED,BEED,
∴∠D=E=90°,∠EBC+BCE=90°,
∴∠ACD=EBC
ACDCBE中,

∴△ACD≌△CBEAAS);

2)①如圖2,過點(diǎn)BBCAB,交l2C,過CCDy軸于D,

∵∠BAC=45°
∴△ABC為等腰直角三角形,
由(1)可知:CBD≌△BAO,
BD=AO,CD=OB,
∵直線l1yx8中,若y=0,則x=-6;若x=0,則y=8,
A-6,0),B0,8),
BD=AO=6,CD=OB=8
OD=8+6=14,
C-814),
設(shè)l2的解析式為y=kx+b,則

解得

l2的解析式:y=-7x-42;

D20),(5-9
理由:當(dāng)點(diǎn)D是直線y=-3x+6上的動(dòng)點(diǎn)且在y軸右側(cè)時(shí)時(shí),分兩種情況:
當(dāng)點(diǎn)D在矩形AOCB的內(nèi)部或邊上時(shí),如圖,過Dx軸的平行線EF,交直線OAE,交直線BCF

設(shè)Dx,-3x+6),則OE=3x-6,AE=6-3x-6=12-3xDF=EF-DE=8-x,
由(1)可得,ADE≌△DPF,則DF=AE,
即:12-3x=8-x,
解得2x=4,x=2
-3x+6=0
D2,0),即點(diǎn)D為直線y=-3x+6x軸交點(diǎn),
此時(shí),PFPC=EDOD=2AO=6=CD,符合題意;

準(zhǔn)確圖形如下:

當(dāng)點(diǎn)D在矩形AOCB的外部時(shí),如圖,過Dx軸的平行線EF,交直線OAE,交直線BCF,

設(shè)Dx-3x+6),則OE=3x-6AE=OE-OA=3x-6-6=3x-12,DF=EF-DE=8-x,
同理可得:ADE≌△DPF,則AE=DF,
即:3x-12=8-x,
解得x=5,
-3x+6=-9,
D5,-9),
此時(shí),ED=PF=5,AE=BF=DF=3BP=PF-BF=5-3=2 6,點(diǎn)P在線段BC上,符合題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn):如圖1,如果△ACB和△CDE均為等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.ADBE的數(shù)量關(guān)系為   ;AEB的度數(shù)為   .

(2)拓展探究:如圖2,如果△ACB和△CDE均為等腰三角形,∠ACB=DCE=90°,點(diǎn)A、D、E在同一直線上,連接BE,判斷線段AEBE的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,是對(duì)角線,,延長(zhǎng)的延長(zhǎng)線于點(diǎn).

1)求證:;

2)若,求的值;

3)過點(diǎn),交的延長(zhǎng)線于點(diǎn),過點(diǎn),交的延長(zhǎng)線于點(diǎn),連接.設(shè),點(diǎn)是直線上的動(dòng)點(diǎn),當(dāng)的值最小時(shí),點(diǎn)與點(diǎn)是否可能重合?若可能,請(qǐng)說明理由并求此時(shí)的值(用含的式子表示);若不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD,AC=5,DAB=DCB=90°,則四邊形ABCD的面積為( 。

A. 15 B. 12.5 C. 14.5 D. 17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù),,是常數(shù),且中的的部分對(duì)應(yīng)值如下表所示,則下列結(jié)論中,正確的個(gè)數(shù)有(

;當(dāng)時(shí),;當(dāng)時(shí),的值隨值的增大而減小;

方程有兩個(gè)不相等的實(shí)數(shù)根.

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖a,網(wǎng)格中的每一個(gè)正方形的邊長(zhǎng)為1,△ABC為格點(diǎn)三角形,直線MN為格點(diǎn)直線(點(diǎn)A、B、C、M、N在小正方形的頂點(diǎn)上).

1)僅用直尺在圖a中作出△ABC關(guān)于直線MN的對(duì)稱圖形△A′B′C′.

2)如圖b,僅用直尺將網(wǎng)格中的格點(diǎn)三角形ABC的面積三等分,并將其中的一份用鉛筆涂成陰影.

3)如圖c,僅用直尺作三角形ABC的邊AC上的高,簡(jiǎn)單說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)的發(fā)展,互聯(lián)網(wǎng)消費(fèi)逐漸深入人們生活,如圖是“滴滴順風(fēng)車”與“滴滴快車”的行駛里程x(公里)與計(jì)費(fèi)y(元)之間的函數(shù)關(guān)系圖象,下列說法:

(1)“快車”行駛里程不超過5公里計(jì)費(fèi)8元;

(2)“順風(fēng)車”行駛里程超過2公里的部分,每公里計(jì)費(fèi)1.2元;

(3)A點(diǎn)的坐標(biāo)為(6.5,10.4);

(4)從哈爾濱西站到會(huì)展中心的里程是15公里,則“順風(fēng)車”要比“快車”少用3.4元,其中正確的個(gè)數(shù)有(

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)是(22),若點(diǎn)Px軸上,且APO是等腰三角形,則點(diǎn)P_____個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以ABC的邊AB為直徑的⊙O分別交BC、ACF、G,且G的中點(diǎn),過點(diǎn)GDEBC,垂足為E,交BA的延長(zhǎng)線于點(diǎn)D

(1)求證:DE是的⊙O切線;

(2)若AB=6,BG=4,求BE的長(zhǎng);

(3)若AB=6,CE=1.2,請(qǐng)直接寫出AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案