【題目】如圖,折線ABC是在某市乘出租車所付車費y(元)與行車里程x(km)之間的函數(shù)關(guān)系圖象.
(1)根據(jù)圖象,求當x≥3時的函數(shù)關(guān)系式;
(2)某人乘坐2.5km,應付多少錢?
(3)某人乘坐13km,應付多少錢?
(4)若某人付車費30.8元,出租車行駛了多少路程?
【答案】(1)y=1.4x+2.8(2)7元(3)21元;(4)20km.
【解析】
(1)根據(jù)(3,7)、(8,14)利用待定系數(shù)法即可得到當x≥3時的函數(shù)關(guān)系式;
(2)根據(jù)圖像直接得到;
(3)把x=13代入直線BC即可求解;
(4)令y=30.8,代入求出x即可.
(1)x≥3時,BC的直線解析式為y=kx+b,(k≠0)
把(3,7)、(8,14)代入得
解得,∴BC的直線解析式為y=1.4x+2.8,
故x≥3時的函數(shù)關(guān)系式為y=1.4x+2.8,
(2)由圖像可知,乘坐2.5km,應付7元;
(3)令x=13,代入y=1.4×13+2.8=21元;
(4)令y=30.8,代入30.8=1.4x+2.8,解得x=20km.
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=mx+n與反比例函數(shù)y= ,其中mn<0,m、n均為常數(shù),它們在同一坐標系中的圖象可以是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一條長度為 a 的線段.
(1)如圖①,以該線段為直徑畫一個圓,該圓的周長 C1 = ;如圖②,分別以該線段的一半為直 徑畫兩個圓,這兩個圓的周長的和 C2 = (都用含 a 的代數(shù)式表示,結(jié)果保留 )
(2)如圖③,在該線段上任取一點,再分別以兩條小線段為直徑畫兩個圓,這兩個圓的周長的和為 C3 ,探索 C1 和 C3 的數(shù)量關(guān)系,并說明理由。
(3)如圖④,當 a =10 時,以該線段為直徑畫一個大圓,再在大圓內(nèi)畫若干個小圓,這些小圓的直徑都和 大圓的直徑在同一條直線上,且小圓的直徑的和等于大圓的直徑,那么圖中所有圓的周長的和為 (結(jié) 果保留 )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在圓⊙O內(nèi)有折線OABC,其中OA=8,AB=12,∠A=∠B=60°,則BC的長為( 。
A. 19 B. 16 C. 18 D. 20
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖所示,在平面直角坐標系中,四邊形ABCO為梯形,BC∥AO,四個頂點坐標分別為A(4,0),B(1,4),C(0,4),O(0,0).一動點P從O出發(fā)以每秒1個單位長度的速度沿OA的方向向A運動;同時,動點Q從A出發(fā),以每秒2個單位長度的速度沿A→B→C的方向向C運動.兩個動點若其中一個到達終點,另一個也隨之停止.設其運動時間為t秒.
(1)求過A,B,C三點的拋物線的解析式;
(2)當t為何值時,PB與AQ互相平分;
(3)連接PQ,設△PAQ的面積為S,探索S與t的函數(shù)關(guān)系式.求t為何值時,S有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有甲、乙兩名采購員去同一家公司分別購買兩次飼料,兩次購買的飼料價格分別為m元/千克和n元/千克,且m≠n,兩名采購員的采購方式也不同,其中甲每次購買800千克,乙每次用去800元,而不管購買多少千克的飼料。
(1)甲、乙兩次購買飼料的平均單價各是多少?(用字母m、n表示)
(2)誰的購買方式比較合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)要求畫圖,并回答問題.
已知:直線AB,CD相交于點O,且OE⊥AB.
(1)過點O畫直線MN⊥CD;
(2)若點F是(1)中所畫直線MN上任意一點(O點除外),若∠AOC=35°,求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校通過初評決定最后從甲、乙、丙三個班中推薦一個班為縣級先進班集體,下表是三個班的五項素質(zhì)考評得分表。
五項素質(zhì)考評得分表(單位:分)
班級 | 行為規(guī)范 | 學習成績 | 校運動會 | 藝術(shù)獲獎 | 勞動衛(wèi)生 |
甲班 | 10 | 10 | 6 | 10 | 7 |
乙班 | 10 | 8 | 8 | 9 | 8 |
丙班 | 9 | 10 | 9 | 6 | 9 |
根據(jù)統(tǒng)計表中的信息回答下列問題:
(1)請你補全五項成績考評分析表中的數(shù)據(jù):
班級 | 平均分 | 眾數(shù) | 中位數(shù) |
甲班 | 8.6 | 10 | ③ |
乙班 | 8.6 | ② | 8 |
丙班 | ① | 9 | 9 |
(2)參照上表中的數(shù)據(jù),你推薦哪個班為縣級先進班集體?并說明理由。
(3)如果學校把行為規(guī)范、學習成績、校運動會、藝術(shù)獲獎、勞動衛(wèi)生五項考評成績按照3∶2∶1∶1∶3的比確定班級的綜合成績,學生處的李老師根據(jù)這個綜合成績,繪制了一幅不完整的條形統(tǒng)計圖,請將這個統(tǒng)計圖補充完整,按照這個成績,應推薦哪個班為縣級先進班集體?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)(x2y-2xy+y2)(-4xy);
(2)6mn2(2-mn4)+(-mn3)2;
(3)-4x2·(xy-y2)-3x·(xy2-2x2y);
(4).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com