如圖,在銳角△ABC中,AC是最短邊;以AC中點(diǎn)O為圓心,AC長(zhǎng)為半徑作⊙O,交BC于E,過O作OD∥BC交⊙O于D,連結(jié)AE、AD、DC.

【小題1】求證:D是弧AE的中點(diǎn);
【小題2】求證:∠DAO=∠B+∠BAD;
【小題3】若,且AC=4,求CF的長(zhǎng).

【小題1】證明:AC為圓O的直徑,則∠AEC=90°.
∵OD∥BC.    ∴OD⊥AE.     ∴點(diǎn)D是弧AE的中點(diǎn).(垂徑定理) 
【小題1】延長(zhǎng)AD交BC于G,由⑴知AD=DE,∴∠ACD=∠GCD
∵AC是⊙O直徑,∴CD⊥AG, 從而證得CA="CG"
∴∠CAG=∠AGC
又∵∠AGC=∠B+∠BAD ∴∠DAO=∠B+∠BAD
【小題1】∵S△AOD= S△OCD, ∴S△ADC="2" S△OCD
△CEF∽△CDA
 即 ,CF="2" 解析:
本題考查垂徑定理的應(yīng)用與相似三角形的性質(zhì)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在銳角△ABC中,以BC為直徑的半圓O分別交AB,AC與D、E兩點(diǎn),且cosA=
3
3
,則S△ADE:S四邊形DBCE的值為(  )
A、
1
2
B、
1
3
C、
3
2
D、
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在銳角△ABC中,a>b>c,以某任意兩個(gè)頂點(diǎn)為頂點(diǎn)作矩形,第三個(gè)頂點(diǎn)落在以這兩個(gè)頂點(diǎn)所確定的對(duì)邊上,這樣可以作三個(gè)面積相等的矩形,請(qǐng)問這三個(gè)矩形的周長(zhǎng)大小關(guān)系如何?(記ta、tb、tc分別以a、b、c為邊的矩形的周長(zhǎng))答:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖,在銳角△ABC中,AB>AC,AD⊥BC于D,以AD為直徑的⊙O分別交AB,AC于E,F(xiàn),連接DE,DF.
(1)求證:∠EAF+∠EDF=180°;
(2)已知P是射線DC上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到PD=BD時(shí),連接AP,交⊙O于G,連接DG.設(shè)∠EDG=∠α,∠APB=∠β,那么∠α與∠β有何數(shù)量關(guān)系?試證明你的結(jié)論.[在探究∠α與∠β的數(shù)量關(guān)系時(shí),必要時(shí)可直接運(yùn)用(1)的結(jié)論進(jìn)行推理與解答]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在銳角△ABC中,∠ABC的平分線交AC于點(diǎn)D,AB邊上的高CE交BD于點(diǎn)M,過點(diǎn)M作BC的垂線段MN,若EC=4,∠BCE=45°,則MN=
 
(結(jié)果保留三位有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在銳角△ABC中,AB=4,∠BAC=45°.∠BAC的平分線交BC于點(diǎn)D,M、N分別是AD和AB上的動(dòng)點(diǎn).則BM+MN的最小值是
2
2
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案