如圖,二次函數(shù)的圖象與x軸交于點A(-3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點P是x軸上一動點,連接DP,過點P作DP的垂線與y軸交于點E.

(1)請直接寫出點D的坐標(biāo):
(2)當(dāng)點P在線段AO(點P不與A、O重合)上運(yùn)動至何處時,線段OE的長有最大值,求出這個最大值;
(3)是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標(biāo)及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.
(1)(﹣3,4);(2)P為AO中點時,OE的最大值為;(3)存在,.

試題分析:(1)將點A的坐標(biāo)代入二次函數(shù)的解析式求得其解析式,然后求得點B的坐標(biāo)即可求得正方形ABCD的邊長,從而求得點D的縱坐標(biāo);
(2)PA=t,OE=l,利用△DAP∽△POE得到比例式,從而得到有關(guān)兩個變量的二次函數(shù),求最值即可;
(3)分點P位于y軸左側(cè)和右側(cè)兩種情況討論即可得到重疊部分的面積.
試題解析:(1)(﹣3,4);
(2)設(shè)PA=t,OE=l
由∠DAP=∠POE=∠DPE=90°得△DAP∽△POE

∴l(xiāng)=﹣
∴當(dāng)t=時,l有最大值
即P為AO中點時,OE的最大值為;
(3)存在.
①點P點在y軸左側(cè)時,P點的坐標(biāo)為(﹣4,0)
由△PAD∽△OEG得OE=PA=1
∴OP=OA+PA=4
∵△ADG∽△OEG
∴AG:GO=AD:OE=4:1
∴AG=,
∴重疊部分的面積=
②當(dāng)P點在y軸右側(cè)時,P點的坐標(biāo)為(4,0),
此時重疊部分的面積為.
考點: 二次函數(shù)綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)的圖像開口方向__________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知拋物線y=-x2+px+q的對稱軸為x=﹣3,過其頂點M的一條直線y=kx+b與該拋物線的另一個交點為N(﹣1,1).要在坐標(biāo)軸上找一點P,使得△PMN的周長最小,則點P的坐標(biāo)為(    )
A.(0,2)B.(,0)
C.(0,2)或(,0)D.以上都不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

動物園計劃用長為120米的鐵絲圍成如圖所示的兔籠,(不包括頂棚)供學(xué)習(xí)小組的同學(xué)參觀,其中一面靠墻,(墻足夠長)怎樣設(shè)計圍成的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=-2(x-1)2+3的圖象的頂點坐標(biāo)是(  。
A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點(4,3),(3,0).

(1)求b、c的值;
(2)求出該二次函數(shù)圖象的頂點坐標(biāo)和對稱軸,并在所給坐標(biāo)系中畫出該函數(shù)的圖象;
(3)該函數(shù)的圖像經(jīng)過怎樣的平移得到的圖像?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

把拋物線向左平移3個單位,再向下平移2個單位后,所得的拋物線的表達(dá)式是
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

把二次函數(shù)的圖象向左平移2個單位,再向上平移1個單位,所得到的圖象對應(yīng)的二次函數(shù)關(guān)系式是(   )
A.B.;
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線上部分點的橫坐標(biāo),縱坐標(biāo)的對應(yīng)值如下表:




0
1
2



0
4
6
6
4

從上表可知,下列說法正確的是     
①拋物線與軸的一個交點為;、趻佄锞與軸的交點為
③拋物線的對稱軸是:直線;   ④在對稱軸左側(cè)增大而增大.

查看答案和解析>>

同步練習(xí)冊答案