【題目】在圖(1)中,在中,,垂足為點(diǎn),點(diǎn)從點(diǎn)出發(fā),以的速度沿射線運(yùn)動,當(dāng)點(diǎn)與點(diǎn)重合時(shí),運(yùn)動停止.過點(diǎn)作,垂足為點(diǎn),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)在射線上的對應(yīng)點(diǎn)為點(diǎn),連接.若與的重疊部分面積為,點(diǎn)的運(yùn)動時(shí)間為,關(guān)于的函數(shù)圖象如圖(2)所示(其中,,時(shí),函數(shù)解析式不同).
(1)求的長;
(2)求關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
【答案】(1);(2)當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.
【解析】
(1)根據(jù)BC=,結(jié)合函數(shù)圖象即可求解;
(2)求出當(dāng)與重合時(shí),即,然后分三種情況討論:①當(dāng)時(shí),②當(dāng)時(shí),③當(dāng)時(shí),分別作出圖形,利用相似三角形的性質(zhì)求出相應(yīng)線段的長度,然后列式整理即可.
解:(1)當(dāng)時(shí),;
(2)如圖1,當(dāng)時(shí),與重合,
則.
所以,,
∴,
∴,
∵∠C=∠C,∠CFE=∠CDA=90°,
∴,
∴,即,
∴,,
如圖2,當(dāng)與重合時(shí),,解得:,
所以,
①當(dāng)時(shí),
∵sin∠C=,
∴,
∴,CF=2t,
∴;
②當(dāng)時(shí),如圖3,作,同理可證,
∴,
∴,
∵,
∴AH=AG=,
∴,
∴;
③當(dāng)時(shí),如圖4,同理可證,
∴
∴,
∴,
綜上所述:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把三角形紙片折疊,使的對應(yīng)點(diǎn)在上,點(diǎn)的對應(yīng)點(diǎn)在上,折痕分別為,,若,,,則的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過,兩點(diǎn),且與軸交于點(diǎn),點(diǎn)是拋物線的頂點(diǎn),拋物線的對稱軸交軸于點(diǎn),連接.
(1)求經(jīng)過,,三點(diǎn)的拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)是線段上一點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,過點(diǎn)作軸于點(diǎn),為拋物線上一動點(diǎn),為軸上一動點(diǎn),為直線上一動點(diǎn),當(dāng)以、、、為頂點(diǎn)的四邊形是正方形時(shí),請求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形中,是邊上的兩個(gè)動點(diǎn),且,連接,與交于點(diǎn),連接交于點(diǎn),連接,下列結(jié)論:①;②平分;③;④;⑤線段的最小值是.正確的個(gè)數(shù)有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)M是正方形ABCD邊CD上一點(diǎn),連接AM,作DE⊥AM于點(diǎn)E,BF⊥AM于點(diǎn)F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某公園內(nèi)有一座古塔AB,在塔的北面有一棟建筑物,某日上午9時(shí)太陽光線與水平面的夾角為32°,此時(shí)塔在建筑物的墻上留下了高3米的影子CD.中午12時(shí)太陽光線與地面的夾角為45°,此時(shí)塔尖A在地面上的影子E與墻角C的距離為15米(B、E、C在一條直線上),求塔AB的高度.(結(jié)果精確到0.01米)
參考數(shù)據(jù):sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)傳統(tǒng)文化,某校開展了“傳承經(jīng)典文化,閱讀經(jīng)典名著”活動.為了解七、八年級學(xué)生(七、八年級各有600名學(xué)生)的閱讀效果,該校舉行了經(jīng)典文化知識競賽.現(xiàn)從兩個(gè)年級各隨機(jī)抽取20名學(xué)生的競賽成績(百分制)進(jìn)行分析,過程如下:
收集數(shù)據(jù):
七年級:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年級:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理數(shù)據(jù):
七年級 | 0 | 1 | 0 | a | 7 | 1 |
八年級 | 1 | 0 | 0 | 7 | b | 2 |
分析數(shù)據(jù):
平均數(shù) | 眾數(shù) | 中位數(shù) | |
七年級 | 78 | 75 | |
八年級 | 78 | 80.5 |
應(yīng)用數(shù)據(jù):
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估計(jì)該校七、八兩個(gè)年級學(xué)生在本次競賽中成績在90分以上的共有多少人?
(3)你認(rèn)為哪個(gè)年級的學(xué)生對經(jīng)典文化知識掌握的總體水平較好,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l:y=kx+b(k≠0)與反比例函數(shù)y的圖象的一個(gè)交點(diǎn)為M(1,m).
(1)求m的值;
(2)直線l與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,連接OM,設(shè)△AOB的面積為S1,△MOB的面積為S2,若S1≥3S2,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(為常數(shù)).
(1)求證:不論為何值,該二次函數(shù)的圖像與軸總有公共點(diǎn).
(2)求證:不論為何值,該二次函數(shù)的圖像的頂點(diǎn)都在函數(shù)的圖像上.
(3)已知點(diǎn)、,線段與函數(shù)的圖像有公共點(diǎn),則的取值范圍是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com