【題目】如圖,在△ADC中,AD=2,CD=4,∠ADC是一個(gè)不固定的角,以AC為邊向△ADC的另一側(cè)作等邊三角形ABC,連接BD,則BD的長(zhǎng)是否存在最大值?若存在,請(qǐng)求出其最大值;若不存在,請(qǐng)說明理由;
【答案】BD存在最大值,最大值是6.
【解析】
以AD為邊做作等邊三角形ADE,連接CE,根據(jù)等邊三角形的性質(zhì)和全等三角形的判定證明△ABD≌△ACE,再利用全等三角形的性質(zhì)以及兩點(diǎn)之間線段最短,即可證得結(jié)論.
證明:BD存在最大值;
如圖,以AD為邊做作等邊三角形ADE,連接CE,
∵△ABC、△ADE都是等邊三角形,
∴AB=AC,AD=AE=DE=2,∠BAC=∠EAD=60°,
∵∠BAD=∠BAC+∠DAC,∠EAC=∠EAD+∠DAC
∴∠BAD=∠EAC,且AB=AC,AD=AE
∴△ABD≌△ACE
∴BD=CE
若點(diǎn)E,點(diǎn)D,點(diǎn)C不在一條直線上,則EC<ED+DC;
若點(diǎn)E,點(diǎn)D,點(diǎn)C在一條直線上,則EC=ED+DC.
∴EC≤ED+CD=2+4=6
∴BD≤6,
∴BD存在最大值,最大值是6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某餐廳以、兩種食材,利用不同的搭配方式推出了兩款健康餐,其中,甲產(chǎn)品每份含200克、200克;乙產(chǎn)品每份含200克、100克.甲、乙兩種產(chǎn)品每份的成本價(jià)分別為、兩種食材的成本價(jià)之和,若甲產(chǎn)品每份成本價(jià)為16元.店家在核算成本的時(shí)候把、兩種食材單價(jià)看反了,實(shí)際成本比核算時(shí)的成本多688元,如果每天甲銷量的4倍和乙銷量的3倍之和不超過120份,那么餐廳每天實(shí)際成本最多為______元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一節(jié)數(shù)學(xué)課上,老師出示了這樣一個(gè)問題讓學(xué)生探究:
已知:如圖在△ABC中,點(diǎn)D 是BA邊延長(zhǎng)線上一動(dòng)點(diǎn),點(diǎn)F 在BC上,且,連接DF交AC于點(diǎn)E .
(1)如圖1,當(dāng)點(diǎn)E恰為DF的中點(diǎn)時(shí),請(qǐng)求出的值;
(2)如圖2,當(dāng)時(shí),請(qǐng)求出的值(用含a的代數(shù)式表示).
思考片刻后,同學(xué)們紛紛表達(dá)自己的想法:
甲:過點(diǎn)F作FG∥AB交AC于點(diǎn)G,構(gòu)造相似三角形解決問題;
乙:過點(diǎn)F作FG∥AC交AB于點(diǎn)G,構(gòu)造相似三角形解決問題;
丙:過點(diǎn)D作DG∥BC交CA延長(zhǎng)線于點(diǎn)G,構(gòu)造相似三角形解決問題;
老師說:“這三位同學(xué)的想法都可以” .
請(qǐng)參考上面某一種想法,完成第(1)問的求解過程,并直接寫出第(2)問的值.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△DEC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在邊AB上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為E,連接BE,以下四個(gè)結(jié)論:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC,其中一定正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班在商場(chǎng)購買甲、乙兩種不同的書籍,購買甲種書籍共花費(fèi)2600元,購買乙種書籍共花費(fèi)1328元,購買甲種書籍的數(shù)量是購買乙種書籍?dāng)?shù)量的2.5倍,且購買一個(gè)乙種書籍比購買一個(gè)甲種書籍多花18元.求購買一個(gè)甲種書籍、一個(gè)乙種書籍各需多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,制作某金屬工具先將材料煅燒6分鐘溫度升到800℃,再停止煅燒進(jìn)行鍛造,8分鐘溫度降為600℃;煅燒時(shí)溫度y(℃)與時(shí)間x(min)成一次函數(shù)關(guān)系;鍛造時(shí)溫度y(℃)與時(shí)間x(min)成反比例函數(shù)關(guān)系;該材料初始溫度是32℃.
(1)分別求出材料煅燒和鍛造時(shí)y與x的函數(shù)關(guān)系式;
(2)根據(jù)工藝要求,當(dāng)材料溫度低于480℃時(shí),須停止操作,那么鍛造的操作時(shí)間有多長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一枚質(zhì)地均勻的正二十面體形狀的骰子,其中的1個(gè)面標(biāo)有“1”,2個(gè)面標(biāo)有“2”, 3個(gè)面標(biāo)有“3”,4個(gè)面標(biāo)有“4”,5個(gè)面標(biāo)有“5”,其余的面標(biāo)有“6”.將這枚骰子擲出后:
(1)數(shù)字幾朝上的概率最?
(2)奇數(shù)面朝上的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線m∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線m于點(diǎn)E,垂足為點(diǎn)F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)點(diǎn)D是AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由;
(3)當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?(不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(一)知識(shí)鏈接
若點(diǎn)M,N在數(shù)軸上,且M,N代表的實(shí)數(shù)分別是a,b,則線段MN的長(zhǎng)度可表示為 .
(二)解決問題
如圖,將一個(gè)三角板放置在平面直角坐標(biāo)系中,∠ACB=90°,AC=BC,點(diǎn)B,C的坐標(biāo)分別為(-2,-4),(-4,0).
(1)求點(diǎn)A的坐標(biāo)及直線AB的表達(dá)式;
(2)若P是x軸上一點(diǎn),且S△ABP=6,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com