已知:如圖所示,∠ABD和∠BDC的平分線交于E,BE交CD于點(diǎn)F,∠1+∠2=90°.
(1)求證:AB∥CD
(2)試探究∠2與∠3的數(shù)量關(guān)系.

【答案】分析:(1)已知BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根據(jù)同旁內(nèi)角互補(bǔ),可得兩直線平行.
(2)已知∠1+∠2=90°,即∠BED=90°;那么∠3+∠FDE=90°,將等角代換,即可得出∠3與∠2的數(shù)量關(guān)系.
解答:證明:(1)∵BE、DE平分∠ABD、∠BDC,
∴∠1=∠ABD,∠2=∠BDC;
∵∠1+∠2=90°,
∴∠ABD+∠BDC=180°;
∴AB∥CD;(同旁內(nèi)角互補(bǔ),兩直線平行)

解:(2)∵DE平分∠BDC,
∴∠2=∠FDE;
∵∠1+∠2=90°,
∴∠BED=∠DEF=90°;
∴∠3+∠FDE=90°;
∴∠2+∠3=90°.
點(diǎn)評(píng):此題主要考查了角平分線的性質(zhì)以及平行線的判定,難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

7、已知:如圖所示,直線a,b都與直線c相交,給出下列條件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖所示,Rt△ABC的周長(zhǎng)為4+2
3
,斜邊AB的長(zhǎng)為2
3
,則Rt△ABC的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、已知:如圖所示,四邊形ABCD是矩形,對(duì)角線AC,BD相交于點(diǎn)O,CE∥DB,交AB的延長(zhǎng)線于點(diǎn)E,AC與CE相等嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、已知:如圖所示,在△ABC中,AB=AC,E在CA延長(zhǎng)線上,AE=AF,AD是高,試判斷EF與BC的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖所示,正比例函數(shù)y=ax的圖象與反比例函數(shù)y=
kx
的圖象交于點(diǎn)A(3,2).
(1)試確定上述正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)M(m,n)是反比例函數(shù)圖象上的一動(dòng)點(diǎn),其中0<m<3,過點(diǎn)M作直線MB∥x軸,交y軸于點(diǎn)B;過點(diǎn)A作直線AC∥y軸交x軸于點(diǎn)C,交直線MB于點(diǎn)D.當(dāng)四邊形OADM的面積為6時(shí),求M點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案