如圖,在四邊形ABCD中,AD∥BC,BC=DC,DG∥AB交BC于點G,CF平分∠BCD交DG于點F,BF的延長線交DC于點E.
(1)求證:△BFC≌△DFC;
(2)在不添加輔助線的情況下,在圖中找出一條與DE相等的線段,并加以證明.

【答案】分析:(1)首先根據(jù)角平分線的性質(zhì)可得∠BCF=∠DCF,再由條件DC=BC,CF=CF即可證明△BFC≌△DFC;
(2)①BG=DE,證明△BFG≌△DFE即可;②AD=DE,首先證明△BFG≌△DFE,根據(jù)全等三角形的性質(zhì)可得DE=BG,再證明四邊形ABGD是平行四邊形,可得AD=BG,進而得到DE=AD.
解答:(1)證明:∵CF平分∠BCD,
∴∠BCF=∠DCF,
在△DCF和△BCF中

∴△BFC≌△DFC(SAS);

(2)①BG=DE,
證明:∵△BFC≌△DFC,
∴BF=DF,∠CBF=∠CDF,
又∵∠BFG=∠DFE,
∴△BFG≌△DFE(ASA),
∴BG=DE;
②AD=DE,
證明:∵△BFC≌△DFC,
∴BF=DF,∠CBF=∠CDF,
又∵∠BFG=∠DFE,
∴△BFG≌△DFE,
∴BG=DE,
∵AD∥BC,DG∥AB,
∴四邊形ABGD是平行四邊形,AD=BG,
∴AD=DE.
點評:此題主要考查了全等三角形的判定與性質(zhì),平行四邊形的判定與性質(zhì),解決此題的關鍵是證明△BFC≌△DFC,△BFG≌△DFE.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案