【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D是直線BC上一點(diǎn),以AD為一邊在AD的右側(cè)作等邊△ADE.求∠DCE的大小.

【答案】60°

【解析】

ABCADE是等邊三角形可以得出AB=BC=ACAD=AE,∠ABC=ACB=BAC=DAE=60°,得出∠ABD=60°,再證明ABD≌△ACE,得出∠ABD=ACE=60°,即可得出結(jié)論.

∵△ABCADE是等邊三角形,

∴∠DAE=BAC=ABC=ACB=60°,AB=AC,AD=AE

∴∠BAC+CAD=DAE+CAD,

即∠BAD=CAE,

ABDACE中,

,

∴△ABD≌△ACESAS),

∴∠ACE=ABC=60°

∴∠DCE=180°-ACE-ACB=180°-60°-60°=60°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)DE分別是邊BC,AC上的中點(diǎn),連接DE,并延長(zhǎng)DE至點(diǎn)F,使EF=ED,連接ADAF,BF,CF,線段ADBF相交于點(diǎn)O,過(guò)點(diǎn)DDGBF,垂足為點(diǎn)G.

(1)求證:四邊形ABDF是平行四邊形;

(2)當(dāng)時(shí),試判斷四邊形ADCF的形狀,并說(shuō)明理由;

(3)若∠CBF=2ABF,求證:AF=2OG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前我市校園手機(jī)現(xiàn)象越來(lái)越受到社會(huì)關(guān)注,針對(duì)這種現(xiàn)象,我市某中學(xué)九年級(jí)數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了學(xué)校若干名家長(zhǎng)對(duì)中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:

1)這次調(diào)查的家長(zhǎng)總數(shù)為________人.家長(zhǎng)表示不贊同的人數(shù)為________;

2請(qǐng)?jiān)趫D①中把條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)從這次接受調(diào)查的家長(zhǎng)中隨機(jī)抽查一個(gè),恰好是贊同的家長(zhǎng)的概率是________;

4)求圖②中表示家長(zhǎng)無(wú)所謂的扇形圓心角的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,我市某中學(xué)在創(chuàng)建特色校園的活動(dòng)中,將學(xué)校的辦學(xué)理念做成了宣傳牌(CD),放置在教學(xué)樓的頂部(如圖所示),該中學(xué)數(shù)學(xué)活動(dòng)小組的同學(xué)在山坡坡腳A處測(cè)得宣傳牌底D的仰角為60°,沿坡AB向上走到B處測(cè)得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度為,AB=10米,AE=15米.

(1)求點(diǎn)B距水平面AE的高度BH;

(2)求宣傳牌CD的高度.(結(jié)果精確到0.1米.參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】快車和慢車分別從甲、乙兩地同時(shí)出發(fā),勻速相向而行,快車到達(dá)乙地后,慢車?yán)^續(xù)前行,設(shè)出發(fā)小時(shí)后,兩車相距千米,圖中折線表示從兩車出發(fā)至慢車到達(dá)甲地的過(guò)程中之間的函數(shù)關(guān)系式,根據(jù)圖中信息,解答下列問(wèn)題.

1)甲、乙兩地相距 千米,快車從甲地到乙地所用的時(shí)間是 小時(shí);

2)求線段的函數(shù)解析式(寫出自變量取值范圍),并說(shuō)明點(diǎn)的實(shí)際意義.

3)求快車和慢車的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線軸交于O點(diǎn)、A點(diǎn),B為拋物線上一點(diǎn),Cy軸上一點(diǎn),連接BC,且BC//OA,已知點(diǎn)O(0,0),A(6,0),B(3,m),AB=.

(1)求B點(diǎn)坐標(biāo)及拋物線的解析式.,

(2)MCB上一點(diǎn),過(guò)點(diǎn)My軸的平行線交拋物線于點(diǎn)E,求DE的最大值;

(3)坐標(biāo)平面內(nèi)是否存在一點(diǎn)F,使得以C、B、D、F為頂點(diǎn)的四邊形是菱形?若存在,求出符合條件的點(diǎn)F坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)等于,,,時(shí),由白色小正方形和黑色小正方形組成的圖形分別如圖所示.則第個(gè)圖形中白色小正方形和黑色小正方形的個(gè)數(shù)總和等于,___________.(用表示,是正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,FDC的中點(diǎn),EBC上一點(diǎn),CE=BC,求證:∠AFE是直角。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形的對(duì)角線相交于點(diǎn)

(1)如圖1,,分別是,上的點(diǎn),的延長(zhǎng)線相交于點(diǎn).若,求證:;

(2)如圖2,上的點(diǎn),過(guò)點(diǎn),交線段于點(diǎn),連結(jié)于點(diǎn),交于點(diǎn).若,

求證:

當(dāng)時(shí),求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案