【題目】如右圖,已知DE⊥AC,BF⊥AC,垂足分別是E、F,AE=CF,DC∥AB,

(1)試證明:DE=BF;
(2)連接DF,BE,猜想DF與BE的關(guān)系?并證明你的猜想的正確性.

【答案】
(1)證明:∵AE=CF,

∴AE+EF=CF+EF,

∴AF=CE,

∵DE⊥AC,BF⊥AC,

∴∠AFB=∠DEC=90°,

∵DC∥AB,

∴∠DCE=∠BAF,

在△AFB和△CED中

∴△AFB≌△CED,

∴DE=EF


(2)證明:

DF=BE,DF∥BE,

證明:∵DE⊥AC,BF⊥AC,

∴DE∥BF,

∵DE=BF,

∴四邊形DEBF是平行四邊形,

∴DF=BE,DF∥BE


【解析】(1)要證DE=BF可證它們所在的三角形△AFB≌△CED全等即可;(2)線段的關(guān)系包括數(shù)量和位置關(guān)系,須證四邊形DEBF是平行四邊形即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】賽龍舟是端午節(jié)的主要習(xí)俗,某市甲乙兩支龍舟隊(duì)在端午節(jié)期間進(jìn)行劃龍舟比賽,從起點(diǎn)A駛向終點(diǎn)B,在整個(gè)行程中,龍舟離開(kāi)起點(diǎn)的距離y(米)與時(shí)間x(分鐘)的對(duì)應(yīng)關(guān)系如圖所示,請(qǐng)結(jié)合圖象解答下列問(wèn)題:

(1)起點(diǎn)A與終點(diǎn)B之間相距多遠(yuǎn)?
(2)哪支龍舟隊(duì)先出發(fā)?哪支龍舟隊(duì)先到達(dá)終點(diǎn)?
(3)分別求甲、乙兩支龍舟隊(duì)的y與x函數(shù)關(guān)系式;
(4)甲龍舟隊(duì)出發(fā)多長(zhǎng)時(shí)間時(shí)兩支龍舟隊(duì)相距200米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)OOE平分∠BOD

1)若∠AOC60°,求∠BOE的度數(shù);

2)若OF平分∠AOD,試說(shuō)明OEOF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,于點(diǎn)E,于點(diǎn)D;點(diǎn)FAB的中點(diǎn),連結(jié)DF,EF,設(shè),,則  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:=8,則點(diǎn)A(1,a)關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)B,將點(diǎn)B向下平移2個(gè)單位后,再向左平移3個(gè)單位得到點(diǎn)C,則C點(diǎn)與原點(diǎn)及A點(diǎn)所圍成的三角形的面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一個(gè)含有45°角的直角三角板的直角頂點(diǎn)放在一張寬為2cm的矩形紙帶邊沿上,另一個(gè)頂點(diǎn)在紙帶的另一邊沿上.若測(cè)得三角板的一邊與紙帶的一邊所在的直線成30°角,則三角板最長(zhǎng)邊的長(zhǎng)是( )

A. 2cm B. 4cm C. 2cm D. 4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作題

(1)畫(huà)圖并填空.

已知ABC中,∠ACB = 90°,AC = 3個(gè)單位,BC = 4個(gè)單位.(1)畫(huà)出把ABC 沿射線BC方向平移2個(gè)單位后得到DEF;直接寫(xiě)出DCF的面積為 .

(2)小明有一張邊長(zhǎng)為13cm的正方形紙片(如圖1),他想將其剪拼成一塊一邊為8cm,的長(zhǎng)方形紙片.他想了一下,不一會(huì)兒就把原來(lái)的正方形紙片剪拼成了一張寬8cm,長(zhǎng)21cm的長(zhǎng)方形紙片(如圖2),你認(rèn)為小明剪拼得對(duì)嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,根據(jù)圖形填空:

已知:∠DAF=F,B=D,ABDC平行嗎?

解:∠DAF=F (   

ADBF(   ),

∴∠D=DCF(   

∵∠B=D (   

∴∠B=DCF (   

ABDC(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知多項(xiàng)式3x62x24的常數(shù)項(xiàng)為a,次數(shù)為b

1)設(shè)ab分別對(duì)應(yīng)數(shù)軸上的點(diǎn)A、點(diǎn)B,請(qǐng)直接寫(xiě)出a   b   ,并在數(shù)軸上確定點(diǎn)A、點(diǎn)B的位置;

2)在(1)的條件下,點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)AB運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒:

①若PAPB6,求t的值,并寫(xiě)出此時(shí)點(diǎn)P所表示的數(shù);

②若點(diǎn)P從點(diǎn)A出發(fā),到達(dá)點(diǎn)B后再以相同的速度返回點(diǎn)A,在返回過(guò)程中,求當(dāng)OP3時(shí),t為何值?

查看答案和解析>>

同步練習(xí)冊(cè)答案