【題目】如圖,在平面直角坐標(biāo)系中,AO⊥BO,∠B=30°,點B在y=的圖象上,求過點A的反比例函數(shù)的解析式.
【答案】反比例函數(shù)的解析式為y=﹣.
【解析】試題分析:
如圖,作AD⊥x軸于D,BE⊥x軸于E,由點B在的圖象上,可設(shè)其坐標(biāo)為B(m, ),則OE=m,BE=,在Rt△AOB中,由∠B=30°可得OB=OA,再證△AOD∽△OBE,即可由相似三角形的性質(zhì)把OD、AD用含“m”的代數(shù)式表達(dá)出來,從而可表達(dá)出點A的坐標(biāo),這樣即可求得過點A的反比例函數(shù)的解析式了.
試題解析:
作AD⊥x軸于D,BE⊥x軸于E,如圖,設(shè)B(m, )
在Rt△ABO中,∵∠B=30°,
∴OB=OA,
∵∠AOD=∠OBE,
∴Rt△AOD∽Rt△OBE,
∴ ,即 ,
∴AD= ,OD=,
∴A點坐標(biāo)為,
設(shè)點A所在反比例函數(shù)的解析式為,
∴k=,
∴點B所在反比例函數(shù)的解析式為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《莊子·天下》:“一尺之棰,日取其半,萬世不竭.”意思是說:一尺長的木棍,每天截掉一半,永遠(yuǎn)也截不完.我國智慧的古代人在兩千多年前就有了數(shù)學(xué)極限思想,今天我們運用此數(shù)學(xué)思想研究下列問題.
(規(guī)律探索)
(1)如圖1所示的是邊長為1的正方形,將它剪掉一半,則S陰影1=1-=__________;
如圖2,在圖1的基礎(chǔ)上,將陰影部分再裁剪掉—半,則S陰影2=1--()2=_______;
同種操作,如圖3,S陰影3=1--()2-()3=__________;
如圖4,S陰影4=1--()2-()3-()4=___________;
……
若同種地操作n次,則S陰影n=1--()2-()3-…-()n=_________.
(規(guī)律歸納)
(2)直接寫出+++…+的化簡結(jié)果:_________.
(規(guī)律應(yīng)用)
(3)直接寫出算式+++…+的值:__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我縣盛產(chǎn)不知火和臍橙兩種水果 ,某公司計劃用兩種型號的汽車運輸不知火和臍橙到外地銷售,運輸中要求每輛汽車都要滿載滿運,且只能裝運一種水果.若用3輛汽車裝運不知火,2輛汽車裝運臍橙可共裝載33噸,若用2輛汽車裝運不知火,3輛汽車裝運臍橙可共裝載32噸.
(1)求每輛汽車可裝載不知火或臍橙各多少噸?
(2)據(jù)調(diào)查,全部銷售完后,每噸不知火可獲利700元,每噸臍橙可獲利500元,計劃用20輛汽車運輸,且臍橙不少于30噸,如何安排運輸才能使公司獲利最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,面積為28的平行四邊形紙片ABCD中,AB=7,∠BAD=45°,按下列步驟進(jìn)行裁剪和拼圖.
第一步:如圖①,將平行四邊形紙片沿對角線BD剪開,得到△ABD和△BCD紙片,再將△ABD紙片沿AE剪開(E為BD上任意一點),得到△ABE和△ADE紙片;
第二步:如圖②,將△ABE紙片平移至△DCF處,將△ADE紙片平移至△BCG處;
第三步:如圖③,將△DCF紙片翻轉(zhuǎn)過來使其背面朝上置于△PQM處(邊PQ與DC重合,△PQM和△DCF在DC同側(cè)),將△BCG紙片翻轉(zhuǎn)過來使其背面朝上置于△PRN處,(邊PR與BC重合,△PRN和△BCG在BC同側(cè)).
則由紙片拼成的五邊形PMQRN中,對角線MN長度的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為測量學(xué)校旗桿AB的高度,小明從旗桿正前方3米處的點C出發(fā),沿坡度為i=1:的斜坡CD前進(jìn)2米到達(dá)點D,在點D處放置測角儀,測得旗桿頂部A的仰角為37°,量得測角儀DE的高為1.5米.A、B、C、D、E在同一平面內(nèi),且旗桿和測角儀都與地面垂直.
(1)求點D的鉛垂高度(結(jié)果保留根號);
(2)求旗桿AB的高度(精確到0.1).
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形中,厘米,厘米,點沿邊從點開始向點以厘米/秒的速度移動;點沿邊從點開始向點以厘米/秒的速度移動,如果、同時出發(fā),用(秒)表示移動的時間,那么:
(1)如圖1,當(dāng)為何值時,線段的長度等于線段的長度?
(2)如圖2,當(dāng)為何值時,與的長度之和是長方形周長的?
(3)如圖3,點到達(dá)點后繼續(xù)以相同速度沿邊運動,到達(dá)點后停止運動;點到達(dá)點后繼續(xù)以相同速度沿邊運動,當(dāng)點停止運動時點也停止運動.當(dāng)點在邊上運動時,為何值可使線段的長度等于線段長度的一半?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛摩托車同時從相距20km的A,B兩地出發(fā),相向而行.圖中l 1,l 2分別表示甲、乙兩輛摩托車到A地的距離s(km)與行駛時間t(h)的函數(shù)關(guān)系.則下列說法錯誤的是( )
A.乙摩托車的速度較快B.經(jīng)過0.3小時甲摩托車行駛到A,B兩地的中點
C.當(dāng)乙摩托車到達(dá)A地時,甲摩托車距離A地kmD.經(jīng)過小時兩摩托車相遇
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料一:我們可以將任意三位數(shù)記為,(其中、、分別表示該數(shù)的百位數(shù)字,十位數(shù)字和個位數(shù)字,且).顯然.
材料二:若一個三位數(shù)的百位數(shù)字,十位數(shù)字和個位數(shù)字均不為,則稱之為“生數(shù)”,比如就是一個“生數(shù)”,將“生數(shù)”的三個數(shù)位上的數(shù)字交換順序,可產(chǎn)生出個新的“生數(shù)”,比如由可以產(chǎn)生出、、、、這個新“生數(shù)”,將這個數(shù)相加,得到的和稱為由“生數(shù)”生成的“完全數(shù)”
問題:(1)求證:任意一個“完全數(shù)”都可以整除;
(2)若一個四位正整數(shù)(,是整數(shù))是由一個“生數(shù)”(,, 、是整數(shù))產(chǎn)生的“完全數(shù)”,請求出這個“生數(shù)”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com