【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),以CD為直徑的⊙O分別交AC,BC于點(diǎn)E,F兩點(diǎn),過點(diǎn)F作FG⊥AB于點(diǎn)G.
(1)試判斷FG與⊙O的位置關(guān)系,并說明理由;
(2)若AC=6,CD=5,求FG的長(zhǎng).
【答案】(1)與相切,證明見詳解;(2)
【解析】
(1)如圖,連接OF,DF,根據(jù)直角三角形的性質(zhì)得到CD=BD,由CD為直徑,得到DF⊥BC,得到F為BC中點(diǎn),證明OF∥AB,進(jìn)而證明GF⊥OF,于是得到結(jié)論;
(2)根據(jù)勾股定理求出BC,BF,根據(jù)三角函數(shù)sinB的定義即可得到結(jié)論.
解:(1)答:與相切.
證明:連接OF,DF,
∵在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),
∴CD=BD=,
∵CD為 ⊙O直徑,
∴DF⊥BC,
∴F為BC中點(diǎn),
∵OC=OD,
∴OF∥AB,
∵FG⊥AB,
∴FG⊥OF,
∴為的切線;
(2)∵CD為Rt△ABC斜邊上中線,
∴AB=2CD=10,
在Rt△ABC中,∠ACB=90°,
∴BC=,
∴BF=,
∵FG⊥AB,
∴sinB=,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙O交BC于點(diǎn)D,交AC于點(diǎn)F,過點(diǎn)C作CE∥AB,且∠CAD=∠CAE.
(1)求證:AE是⊙O的切線;
(2)若AB=8,AC=6,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊三角形,頂點(diǎn)在雙曲線上,點(diǎn)的坐標(biāo)為.過作交雙曲線于點(diǎn),過作交軸于點(diǎn),得到第二個(gè)等邊;過作交雙曲線于點(diǎn),過作交軸于點(diǎn),得到第三個(gè)等邊;以此類推,... 則點(diǎn)的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教委為了讓廣大青少年學(xué)生走向操場(chǎng)、走進(jìn)自然、走到陽(yáng)光下,積極參加體育鍛煉,啟動(dòng)了“學(xué)生陽(yáng)光體育運(yùn)動(dòng)”,其中有一項(xiàng)是短跑運(yùn)動(dòng),短跑運(yùn)動(dòng)可以鍛煉人的靈活性,增強(qiáng)人的爆發(fā)力,因此張明和李亮在課外活動(dòng)中報(bào)名參加了百米訓(xùn)練小組.在近幾次百米訓(xùn)練中,教練對(duì)他們兩人的測(cè)試成績(jī)進(jìn)行了統(tǒng)計(jì)和分析,請(qǐng)根據(jù)圖表中的信息解答以下問題:
成績(jī)統(tǒng)計(jì)分析表
(1)張明第2次的成績(jī)?yōu)?/span>__________秒;
(2)請(qǐng)補(bǔ)充完整上面的成績(jī)統(tǒng)計(jì)分析表;
(3)現(xiàn)在從張明和李亮中選擇一名成績(jī)優(yōu)秀的去參加比賽,若你是他們的教練,應(yīng)該選擇誰? 請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一個(gè)等腰直角三角形放在平面直角坐標(biāo)系中,∠ACB=90°,點(diǎn)C(-1,0),點(diǎn)B在反比例函數(shù)的圖像上,且y軸平分∠BAC,則k的值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣1,0),點(diǎn)C(0,5),另拋物線經(jīng)過點(diǎn)(1,8),M為它的頂點(diǎn).
(1)求拋物線的解析式;
(2)求△MCB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)求證:無論為任何實(shí)數(shù),此方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程的兩個(gè)實(shí)數(shù)根為、,滿足,求的值;
(3)若△的斜邊為5,另外兩條邊的長(zhǎng)恰好是方程的兩個(gè)根、,求的內(nèi)切圓半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點(diǎn)為底邊上一動(dòng)點(diǎn),將射線繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后,與射線相交于點(diǎn),且
如圖①,當(dāng)點(diǎn)在底邊上,時(shí),請(qǐng)直接寫出線段之間的數(shù)量關(guān)系;
如圖②,當(dāng)點(diǎn)在底邊上,,且時(shí),求證:
當(dāng),且時(shí),請(qǐng)直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)計(jì)劃為鄉(xiāng)村希望小學(xué)購(gòu)買一些文具送給學(xué)生,為此希望小學(xué)決定圍繞在筆袋、圓規(guī)、直尺和鋼筆四種文具中,你最需要的文具是什么(必選且只選一種)的問題,在全校內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中所給的信息解答下列問題:
(1)在這次調(diào)查中,一共抽取了多少名學(xué)生?
(2)請(qǐng)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若希望小學(xué)共有360名學(xué)生,請(qǐng)你估計(jì)全校學(xué)生中最需要鋼筆的學(xué)生有多少名?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com