【題目】如圖,AB=AC,∠A=36°,直線MN垂直平分AC交AB于M,
(1)求∠BCM的度數(shù);(2)若AB=5,BC=3,求△BCM的周長(zhǎng).
【答案】(1)36°;(2)8.
【解析】
(1)由AB=AC,∠A=36°,可求得∠ACB的度數(shù),又由直線MN垂直平分AC交AB于M,根據(jù)線段垂直平分線的性質(zhì),可求得AM=CM,即可求得∠ACM的度數(shù),繼而求得∠BCM的度數(shù);
(2)由AM=CM,可得△BCM的周長(zhǎng)=BC+AB.
解:(1)∵AB=AC,∠A=36°,
∴∠B=∠ACB=72°,
∵直線MN垂直平分AC交AB于M,
∴AM=CM,
∴∠ACM=∠A=36°,
∴∠BCM=∠ACB∠ACM=36°;
(2)∵AM=CM,
∴△BCM的周長(zhǎng)=BC+CM+BM=BC+AM+BM=BC+AB=3+5=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次籃球聯(lián)賽初賽階段,每隊(duì)有場(chǎng)比賽,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)得分, 負(fù)一場(chǎng)得分,積分超過(guò)分才能獲得參賽資格.
(1)已知甲隊(duì)在初賽階段的積分為分,求甲隊(duì)初賽階段勝、負(fù)各多少場(chǎng);
(2)如果乙隊(duì)要獲得參加決賽資格,那么乙隊(duì)在初賽階段至少要?jiǎng)俣嗌賵?chǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,∠C=40°,P,Q分別在BC,CA上,AP,BQ分別是∠BAC,∠ABC的角平分線.求證:BQ+AQ=AB+BP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:正方形ABCD的邊長(zhǎng)為8,點(diǎn)E、F分別在AD、CD上,AE=DF=2,BE與AF相交于點(diǎn)G,點(diǎn)H為BF的中點(diǎn),連接GH,則GH的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形中,是邊上一點(diǎn)(點(diǎn)不與點(diǎn)重合),連接.
(感知)如圖1,過(guò)點(diǎn)作交于點(diǎn).易證.(不需要證明)
(探究)如圖2,取的中點(diǎn),過(guò)點(diǎn)作交于點(diǎn),交于點(diǎn).
(1)求證:.
(2)連接.若,則的長(zhǎng)為___________.
(應(yīng)用)如圖3,取的中點(diǎn),連接.過(guò)點(diǎn)作交于點(diǎn),連接.若,則四邊形的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過(guò)對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將一張矩形紙片ABCD沿著對(duì)角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BE交AD于點(diǎn)F.
(1)求證:△BDF是等腰三角形;
(2)如圖2,過(guò)點(diǎn)D作DG∥BE,交BC于點(diǎn)G,連接FG交BD于點(diǎn)O.
①判斷四邊形BFDG的形狀,并說(shuō)明理由;
②若AB=6,AD=8,求FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD的邊BC延長(zhǎng)線上一點(diǎn),連結(jié)DE,過(guò)頂點(diǎn)B作BF⊥DE,垂足為F,BF分別交AC于H,交BC于G.
(1)求證:BG=DE;
(2)若點(diǎn)G為CD的中點(diǎn),求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的面積為3,BD:DC=2:1,E是AC的中點(diǎn),AD與BE相交于點(diǎn)P,那么四邊形PDCE的面積為( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com