【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
【答案】
(1)解:MN是⊙O切線.
理由:連接OC.
∵OA=OC,
∴∠OAC=∠OCA,
∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,
∴∠BCM=∠BOC,
∵∠B=90°,
∴∠BOC+∠BCO=90°,
∴∠BCM+∠BCO=90°,
∴OC⊥MN,
∴MN是⊙O切線.
(2)解:由(1)可知∠BOC=∠BCM=60°,
∴∠AOC=120°,
在Rt△BCO中,OC=OA=4,∠BCO=30°,
∴BO= OC=2,BC=2
∴S陰=S扇形OAC﹣S△OAC= .
【解析】(1)MN是⊙O切線 ,理由如下:連接OC,根據(jù)等邊對等角得出∠OAC=∠OCA,根據(jù)三角形的外角定理得出∠BOC=∠A+∠OCA=2∠A ,又因∠BCM=2∠A,從而得出∠BCM=∠BOC,根據(jù)直角三角形兩銳角互余得出∠BOC+∠BCO=90°,根據(jù)等量代換得出∠BCM+∠BCO=90°,從而得出OC⊥MN,MN是⊙O切線 ;
(2)根據(jù)鄰補角的定義得出∠AOC=120°,根據(jù)含30角的直角三角形邊之間的關系得出OB的長,進而根據(jù)勾股定理得出BC的長,然后利用S陰=S扇形OAC﹣S△OAC ,算出答案。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整.
解: ∵EF∥AD,
∴∠2=____(____________________________)
又∵∠1=∠2
∴∠1=∠3(等量代換)
∵AB∥_____(_____________________________)
∴∠BAC+______=180°(___________________________)
∵∠BAC=70°
∴∠AGD=_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=40°,將△ABC繞點A按逆時針方向旋轉100°.得到△ADE,連接BD,CE交于點F.
(1)求證:△ABD≌△ACE;
(2)求證:四邊形ABFE是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某新建小區(qū)要在一塊等邊三角形內(nèi)修建一個圓形花壇.
(1)要使花壇面積最大,請你用尺規(guī)畫出圓形花壇示意圖;(保留作圖痕跡,不寫做法)
(2)若這個等邊三角形的周長為36米,請計算出花壇的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個以點O為圓心的同心圓,
圖1 圖2
(1)如圖1,大圓的弦AB交小圓于C,D兩點,試判斷AC與BD的數(shù)量關系,并說明理由.
(2)如圖2,將大圓的弦AB向下平移使其為小圓的切線,切點為C,證明:AC=BC.
(3)在(2)的基礎上,已知AB=20cm,直接寫出圓環(huán)的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)請用兩種不同的方法列代數(shù)式表示圖中陰影部分的面積.
方法①_________________;
方法②_________________;
(2)根據(jù)(1)寫出一個等式________________;
(3)若,.
①求的值。
②,的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知 的三邊長為a,b,c,且滿足方程a2x2-(c2-a2-b2)x+b2=0,則方程根的情況是( )。
A.有兩相等實根
B.有兩相異實根
C.無實根
D.不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列是用火柴棒拼成的一組圖形,第①個圖形中有 3 根火柴棒,第②個圖形中有 9 根火柴棒,第③個圖形中有 18 根火柴棒,…,按此規(guī)律排列下去,第⑥個圖形中火柴棒的根數(shù)是( ).
A. 63B. 60C. 56D. 45
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com