【題目】如圖,在△ABC中,CF⊥AB于F,BE⊥AC于E,M為BC的中點.
(1)若EF=3,BC=8,求△EFM的周長;
(2)若∠ABC=50°,∠ACB=60°,求∠EMF的度數.
【答案】(1)11;(2)40°.
【解析】
(1)根據直角三角形斜邊上的中線等于斜邊的一半可得EM=MC=BC,MF=MB= BC,然后根據三角形的周長的定義列式計算即可得解;
(2)根據等邊對等角求出,∠ABC=∠MFB,∠ACB=∠MEC,再根據三角形的內角和定理求出∠BMF, ∠EMC,然后利用平角等于180°列式計算即可得解.
(1)∵CF⊥AB于F, M為BC的中點,∴ME=MC=BC=×8=4,同理MF=MB= BC=×8=4,∴△EFM的周長=4+4+3=11;
(2)∵MF=MB,∴∠ABC=∠MFB=50°,同理∠ACB=∠MEC=60°,∴∠BMF=180°-50°-50°=80°,∠EMC=180°-60°-60°=60°,∴∠EMF=180°-80°-60°=40°.
科目:初中數學 來源: 題型:
【題目】光明中學八年級甲、乙、丙三個班中,每班的學生人數都為40名,某次數學考試的成績統(tǒng)計如圖:(每組分數含最小值,不含最大值)
丙班數學成績頻數統(tǒng)計表
分數 | 50~60 | 60~70 | 70~80 | 80~90 | 90~100 |
人數 | 1 | 4 | 15 | 11 | 9 |
根據上圖及統(tǒng)計表提供的信息,則80~90分這一組人數最多的班是________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】⊙O是△ABC的外接圓,AB是直徑,過 的中點P作⊙O的直徑PG,與弦BC相交于點D,連接AG、CP、PB.
(1)如圖1,求證:AG=CP;
(2)如圖2,過點P作AB的垂線,垂足為點H,連接DH,求證:DH∥AG;
(3)如圖3,連接PA,延長HD分別與PA、PC相交于點K、F,已知FK=2,△ODH的面積為2 ,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知反比例函數y= 與一次函數y=x+b的圖形在第一象限相交于點A(1,﹣k+4).
(1)試確定這兩函數的表達式;
(2)求出這兩個函數圖象的另一個交點B的坐標,并求△AOB的面積;
(3)根據圖象直接寫出反比例函數值大于一次函數值的x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在△ABC中,AD⊥BC于D,DE∥AC于E,DF∥AB交AC于F,連接EF。
(1)當△ABC滿足什么條件時,四邊形AEDF是矩形;
(2)當△ABC滿足什么條件時,四邊形AEDF是正方形,并說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連接EC,若CE=5,則BC等于( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一塊四邊形田地ABCD,∠D=90°,AB=13m,BC=12m,CD=3m,DA=4m,則該四邊形田地ABCD的面積為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com