【題目】如圖,過邊長為3的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,當PA=CQ時,連PQ交AC邊于D,則DE的長為_____.
【答案】.
【解析】
過P作PF∥BC交AC于F,得出等邊三角形APF,推出AP=PF=QC,根據等腰三角形性質求出EF=AE,證△PFD≌△QCD,推出FD=CD,推出DEAC即可.
過P作PF∥BC交AC于F,
∵PF∥BC,△ABC是等邊三角形,
∴∠PFD=∠QCD,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,
∴△APF是等邊三角形,
∴AP=PF=AF.
∵PE⊥AC,
∴AE=EF.
∵AP=PF,AP=CQ,
∴PF=CQ,
在△PFD和△QCD中,
∵,
∴△PFD≌△QCD(AAS),
∴FD=CD.
∵AE=EF,
∴EF+FD=AE+CD,
∴AE+CD=DEAC.
∵AC=3,
∴DE.
故答案為:.
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a、b、c都是常數,且a≠0)的圖象與x軸交于點(﹣2,0)、(x1,0),且1<x1<2,與y軸的正半軸的交點在(0,2)的下方,下列結論:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1>0.其中正確結論的個數是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+2x+8與x軸交于A,B兩點,與y軸交于點C,且B(4,0).
(1)求拋物線的解析式及其頂點D的坐標;
(2)如果點P(p,0)是x軸上的一個動點,則當|PC﹣PD|取得最大值時,求p的值;
(3)能否在拋物線第一象限的圖象上找到一點Q,使△QBC的面積最大,若能,請求出點Q的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了弘揚學生愛國主義精神,充分展現新時期青少年良好的思想道德素質和精神風貌,豐富學生的校園生活,陶冶師生的情操,某校舉辦了“中國夢愛國情成才志”中華經典詩文誦讀比賽.九(1)班通過內部初選,選出了麗麗和張強兩位同學,但學校規(guī)定每班只有1個名額,經過老師與同學們商量,用所學的概率知識設計摸球游戲決定誰去,設計的游戲規(guī)則如下:在A、B兩個不透明的箱子分別放入黃色和白色兩種除顏色外均相同的球,其中A箱中放置3個黃球和2個白球;B箱中放置1個黃球,3個白球,麗麗從A箱中摸一個球,張強從B箱摸一個球進行試驗,若兩人摸出的兩球都是黃色,則麗麗去;若兩人摸出的兩球都是白色,則張強去;若兩人摸出球顏色不一樣,則放回重復以上動作,直到分出勝負為止.
根據以上規(guī)則回答下列問題:
(1)求一次性摸出一個黃球和一個白球的概率;
(2)判斷該游戲是否公平?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AC、AB上的點,BD與CE相交于點O,給出四個條件:①OB=OC;②∠EBO=∠DCO;③∠BEO=∠CDO;④BE=CD.上述四個條件中,選擇兩個可以判定△ABC是等腰三角形的方法有( 。
A.2種B.3種C.4種D.6種
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若正整數k滿足個位數字為1,其他數位上的數字均不為1且十位與百位上的數字相等,
我們稱這樣的數k為“言唯一數”,交換其首位與個位的數字得到一個新數k',并記F(k)=.
(1)最大的四位“言唯一數”是 ,最小的三位“言唯一數”是 ;
(2)證明:對于任意的四位“言唯一數”m,m+m'能被11整除;
(3)設四位“言唯一數”n=1000x+100y+10y+1(2≤x≤9,0≤y≤9且y≠1,x、y均為整數),若F(n)仍然為“言唯一數”,求所有滿足條件的四位“言唯一數”n.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有4張正面分別標有數字﹣1,2,﹣3,4的不透明卡片,它們除數字外其余全部相同,現將它們背面朝上,洗勻后從4張卡片中隨機摸出一張不放回,將該卡片上的數字記為m,在隨機抽取1張,將卡片的數字即為n.
(1)請用列表或樹狀圖的方式把(m,n)所有的結果表示出來.
(2)求選出的(m,n)在二、四象限的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形中,,點是邊上一點,,,垂足為點,交于點,連接.
(1)四邊形是平行四邊形嗎?說明理由;
(2)求證:;
(3)若點是邊的中點,求證:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某單位750名職工積極參加向貧困地區(qū)學校捐書活動,為了解職工的捐書量,采用隨機抽樣的方法抽取30名職工作為樣本,對他們的捐書量進行統(tǒng)計,統(tǒng)計結果共有4本、5本、6本、7本、8本五關,分別用表示,根據統(tǒng)計數據繪制成了如圖所示的不完整的條形統(tǒng)計圖,由圖中給出的信息解答下列問題:
(1)補全條形統(tǒng)計圖;
(2)求這30名職工捐書本數的平均數、中位數;
(3)估計該單位750名職工共捐書多少本.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com