如圖,已知拋物線y=-x2+bx+c與x軸的兩個交點分別為A(x1,0),B(x2,0),且x1+x2=4精英家教網(wǎng),
x1
x2
=
1
3

(1)分別求出A,B兩點的坐標(biāo);
(2)求此拋物線的函數(shù)解析式;
(3)設(shè)此拋物線與y軸的交點為C,過
OE
3
=
3
4
作直線l與拋物線交于另一點D(點D在x軸上方),連接AC,CB,BD,DA,當(dāng)四邊形ACBD的面積為4時,求點D的坐標(biāo)和直線l的函數(shù)解析式.
分析:(1)由已知條件可求出x1,x2的值,A、B的坐標(biāo)可求.
(2)把A,B的坐標(biāo)代入二次函數(shù)的解析式中,得到關(guān)于b,c的方程組,解即可.
(3)此題所給的已知條件有問題.
解答:解:(1)由x1+x2=4,
x1
x2
=
1
3
,
得,x1=1,x2=3,(1分)
∴A(1,0),B(3,0).(3分)

(2)把A(1,0),B(3,0)的坐標(biāo)代入y=-x2+bx+c,
得,
-1+b+c=0
-9+3b+c=0
,(4分)
解得,b=4,c=-3.(5分)
∴所求拋物線的函數(shù)解析式為y=-x2+4x-3.(6分)

(3)由題意,設(shè)點D的坐標(biāo)為(f,h),
∵y=-x2+4x-3,
∴點C的坐標(biāo)為(0,-3),
S△ADB+S△ABC=4,
1
2
×2h+
1
2
×2×3=4,(7分)
∴h=1,(8分)
∴-f2+4f-3=1,
解得,f1=f2=2,(9分)
∴D(2,1).(10分)
設(shè)l的解析式為y=kx+m,
m=-3
2k+m=1

k=2
m=-3
.(11分)
∴l(xiāng)的函數(shù)解析式為y=2x-3.(12分)
點評:本題利用了解方程組,以及解一元二次方程等知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標(biāo),若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設(shè)運動的時間為t秒.
①當(dāng)t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
(4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案