已知∠A=40°18′,∠B=40°17′30″,∠C=40.18°,則(  )
A、∠A>∠B>∠CB、∠B>∠A>∠CC、∠C>∠A>∠BD、∠A>∠C>∠B
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

矩形是平行四邊形.
 
(判斷對錯)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在一張長方形紙片ABCD中,AB=25cm,AD=20cm,現(xiàn)將這張紙片按下列圖示方法折疊,請解決下列問題.
(1)如圖(1),折痕為DE,點A的對應點F在CD上,求折痕DE的長;
(2)如圖(2),H,G分別為BC,AD的中點,A的對應點F在HG上,折痕為DE,求重疊部分的面積;
(3)如圖(3),在圖(2)中,把長方形ABCD沿著HG對開,變成兩張長方形紙片,將兩張紙片任意疊合后,判斷重疊四邊形的形狀,并證明;
(4)在(3)中,重疊四邊形的周長是否存在最大值或最小值?如果存在,試求出來;如果不存在,試簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題情境:數(shù)學活動課上,老師提出了一個問題:如圖①,已知在△ABC中,∠ACB=90°,AC=BC,點D為直線AB上的一動點(點D不與點A,B重合)連接CD,以點C為旋轉中心,將CD逆時針旋轉90°得到CE,連接BE,試探索線段AB,BD,BE之間的數(shù)量關系.
小組展示:“希望”小組展示如下:解:線段AB,BD,BE之間的數(shù)量關系是AB=BE+BD.
證明:如圖①∵∠ACB=90°,∠DCE=90°
∴∠ACB=∠DCE
∴∠ACB=∠DCB=∠DCE-∠DCB
即∠ACD=∠BCE
∵CE是由CD旋轉得到.
∴CE=CD
則在△ACD和△BCE中,
AC=BC
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE(依據(jù)1)
∴AD=BE(依據(jù)2)
∵AB=AD+BD
∴AB=BE+BD
反思與交流:
(1)上述證明過程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:
 

依據(jù)2:
 

(2)“騰飛”小組提出了與“希望”小組不同的意見,認為還有兩種情況需要考慮,你根據(jù)他們的分類情況直接寫出發(fā)現(xiàn)的結論:
①如圖②,當點D在線段AB的延長線上時,三條點段AB,BD,BE之間的數(shù)量關系是
 

②如圖③,當點D在線段BA的延長線上時,三條線段AB,BD,BE之間的數(shù)量關系是
 

(3)如圖④,當點D在線段BA的延長線上時,若CD=4,線段DE的中點為F,連接FB,求FB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點P從點A開始沿折線AC-CB-BA運動,點P在AC,CB,BA邊上運動的速度分別為每秒3,4,5 個單位.直線l從與AC重合的位置開始,以每秒
43
個單位的速度沿CB方向平行移動,即移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設運動的時間為t秒,當點P第一次回到點A時,點P和直線l同時停止運動
(1)①當t=3秒時,點P走過的路徑長為
 
;②當t=
 
秒時,點P與點E重合;③當t=
 
秒時,PE∥AB;
(2)當點P在AC邊上運動時,將△PEF繞點E逆時針旋轉,使得點P的對應點M落在EF上,點F的對應點記為點N,當EN⊥AB時,求t的值;
(3)當點P在折線AC-CB-BA上運動時,作點P關于直線EF的對稱點,記為點Q.在點P與直線l運動的過程中,若形成的四邊形PEQF為菱形,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在菱形ABCD中,AC、BD相交于O,且AC:BD=1:
3
,若AB=2.則菱形ABCD的面積是(  )
A、2
3
B、
3
C、
3
2
D、
3
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列說法中,正確的是( 。
A、菱形的對角線相等B、兩組鄰邊分別相等的四邊形是菱形C、對角線互相垂直的四邊形是菱形D、菱形的對角線互相垂直平分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在菱形ABCD中,對角線AC,BD的長分別為8和6,將△BCD平移到△EBA,則四邊形AECD的面積為( 。
A、36B、48C、72D、96

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

把下列各數(shù)填人相應的括號內:
-3,-0.4,π,-|-4|,-
22
7
,0.333…,1.753,-
π
7
,0,0.4262262226….
整數(shù)集合:{______…};
分數(shù)集合:{______…};
有理數(shù)集合:{______…};
非負數(shù)集合:{______…}.

查看答案和解析>>

同步練習冊答案