計(jì)算:(1-
1
22
)×(1-
1
32
)×…×(1-
1
20092
)×(1-
1
20102
)
分析:先運(yùn)用平方差公式,再兩兩約分即可求解.
解答:解:(1-
1
22
)×(1-
1
32
)×…×(1-
1
20092
)×(1-
1
20102
)
,
=
1
2
×
3
2
×
2
3
×
4
3
×…×
2008
2009
×
2010
2009
×
2009
2010
×
2011
2010

=
1
2
×
2011
2010
,
=
2011
4020
點(diǎn)評(píng):本題考查了因式分解的應(yīng)用,解題的關(guān)鍵是應(yīng)用平方差公式簡(jiǎn)便計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:(1-
1
22
)
(1-
1
32
)
(1-
1
42
)
(1-
1
52
)
(1-
1
62
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:(1-
1
22
)(1-
1
32
)(1-
1
42
)(1-
1
20042
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

利用因式分解計(jì)算:(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
92
)(1-
1
102
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算
1+
1
12
+
1
22
+
1+
1
22
+
1
32
+
1+
1
32
+
1
42
+…+
1+
1
20102
+
1
20112
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案